
Generating Learning Algorithms: Hidden Markov

Models as a Case Study

GENERATING LEARNING ALGORITHMS: HIDDEN MARKOV

MODELS AS A CASE STUDY

BY

DANIEL M. SZYMCZAK, B.Eng.

a thesis

submitted to the department of software engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Daniel M. Szymczak, March 2014

All Rights Reserved

Master of Applied Science (2014) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: Generating Learning Algorithms: Hidden Markov Mod-

els as a Case Study

AUTHOR: Daniel M. Szymczak

B.Eng., (Software Engineering)

McMaster University,

Hamilton, Ontario, Canada

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: xi, 99

ii

In loving memory of my grandmother

Abstract

This thesis presents the design and implementation of a source code generator for

dealing with Bayesian statistics. The specific focus of this case study is to produce

usable source code for handling Hidden Markov Models (HMMs) from a Domain

Specific Language (DSL).

Domain specific languages are used to allow domain experts to design their source

code from the perspective of the problem domain. The goal of designing in such a way

is to increase the development productivity without requiring extensive programming

knowledge.

iv

Acknowledgements

I would like to thank my supervisor Dr. Jacques Carette and my family for all of their

support, teaching, and guidance.

I would also like to thank the people at xkcd for allowing me to use their comic.

v

Notation and abbreviations

• AST = Abstract Syntax Tree

• DP = Dynamic Programming

• DSL = Domain Specific Language

• HMM = Hidden Markov Model

• HTML = HyperText Markup Language

vi

Contents

Abstract iv

Acknowledgements v

Notation and abbreviations vi

1 Introduction 1

2 Requirements 4

2.1 Code generator requirements . 4

2.2 DSL Requirements . 5

2.3 Generated source requirements 5

3 Bayesian Statistics 6

3.1 An Introduction . 6

3.2 Bayesian Inference . 8

3.3 Introduction to Hidden Markov Models (HMMs) 10

3.4 The Math behind Hidden Markov Models 11

4 Domain Specific Languages 18

vii

4.1 What are DSLs? . 18

4.2 DSLs: Embedded vs. External 19

4.3 Relevance . 20

5 Code Generation 22

5.1 What is code generation? . 22

5.2 How does code generation work? 23

5.3 Why use code generation? . 23

6 The HMM Generator 25

6.1 The Components . 26

6.2 Some domain specific terms . 31

6.3 Constructing a program using the DSL Syntax 34

6.3.1 Expressions . 36

6.3.2 Statements . 39

6.4 Putting it all together: A simple Hello World program 42

7 HMM Implementation 46

7.1 The forward algorithm . 48

7.2 The backward algorithm . 51

7.3 Finding the optimal path using γt(i) 53

7.4 Re-estimating A,B, and π . 55

7.5 Scaling HMMs . 57

7.6 HMMs in the HMM Generator 60

8 Testing 66

viii

8.1 Testing the generator . 66

8.2 Testing the generated code . 67

8.2.1 Does it work? . 67

8.2.2 Does it represent the design? 71

8.3 Known Issues and Special Cases 72

9 Conclusion 74

9.1 Lessons Learned . 74

9.2 Next Steps . 75

A AST Implementations 77

A.1 ASTDesign . 77

A.2 ASTInternal . 78

A.3 ASTC . 83

B Generated C Code 86

B.1 Header File . 86

B.2 C Source File . 87

C Large Test Case Results 98

ix

List of Figures

3.1 A look at the difference between frequentist and Bayesian statisticians. 8

6.1 Translating an “Alloc” statement from the internal AST to the C AST 28

6.2 An example function from the printer 29

6.3 The generate function in the design file 29

6.4 Setting up the generator with specific design choices 30

6.5 An example of some helper functions for the printer 30

6.6 A “hello world” implementation in the HMM Generator 43

6.7 Functions for translating declarations and methods to the C AST . . 44

6.8 The “printC” and “printH” functions in the printer 44

6.9 The functions for building the prototypes and methods in C 44

6.10 Printing the “Out” statement . 45

6.11 The “HelloWorld” header file . 45

6.12 The “HelloWorld” c file . 45

7.1 HMM Representation in Haskell 46

7.2 HMM Representation in C . 47

7.3 HMM Representation in the HMM Generator 47

7.4 αt(i) computation in Haskell . 49

7.5 αt(i) computation in C . 49

x

7.6 α-pass in Haskell . 50

7.7 α-pass in C . 50

7.8 βt(i) computation in Haskell . 52

7.9 βt(i) computation in C . 52

7.10 γt(i) computation in Haskell . 53

7.11 γt(i) computation in C . 54

7.12 Finding the optimal path in Haskell 54

7.13 Finding the optimal path in C 54

7.14 Training a model in Haskell . 56

7.15 Training a model in C . 56

7.16 Scaled training code in C . 59

7.17 α computation in the HMM Generator 61

7.18 α-pass in the HMM Generator 61

7.19 β computation in the HMM Generator 62

7.20 β-pass in the HMM Generator 63

7.21 A non-scaled γ computation in the HMM Generator 63

7.22 Scaled γ computation in the HMM Generator 64

7.23 Training a model in the HMM Generator 65

xi

Chapter 1

Introduction

There are many software applications that would benefit from the use of learning

algorithms, including but not limited to, security, object recognition, search engines,

medical diagnostics, fraud detection, and information retrieval. However, creating ap-

propriate models and algorithms for each specific application can be time consuming

and costly.

One proposed method for simplifying the production of learning algorithms, while

simultaneously allowing them to be customized to their applications, is to create a

domain specific language (DSL) and a source code generator. From there, changes in

algorithm design decisions can be implemented with trivial effort and working source

code will be available promptly.

There are many approaches to learning algorithms including supervised learning,

unsupervised learning, semi-supervised learning, transduction (or transduction infer-

ence), or reinforcement learning. In fact learning can be broken down into a series of

different approaches based on current machine learning algorithms. These approaches

include, but are not limited to:

1

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

• Artificial neural networks

• Bayesian networks

• Decision tree learning

• Inductive logic programming

• Representation learning

• Sparse dictionary learning

This paper will be looking at Bayesian learning algorithms, specifically focusing

on hidden Markov models (HMMs). HMMs are a simple type of dynamic Bayesian

network and are very well known for their use in temporal pattern recognition, which

has applications in many fields including bioinformatics, cryptanalysis, and speech,

handwriting, and gesture recognition.

The overarching goal of this work is to create a DSL and source code generator for

handling HMMs in such a way that it will be fairly simple to learn and use. However,

as the overall development of the generator followed an approach similar to the agile

software development model, this thesis covers the work done over a relatively short

period of time and has yet to achieve that final goal. The current version of this work

acts as a proof of concept that could be expanded upon into a more fully-featured

DSL. The actual production of the generator involved creating an initial version with

a barebones DSL and improving upon it in successive iterations in order to refine the

language and implement additional features (as per the requirements).

Please Note: The current version of the generator source code is available on the

“Projects” page on http: // www. dszymczak. com

2

http://www.dszymczak.com

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Organization of the thesis

Chapter 2 will outline the requirements for the HMM Generator and for the final

generated source code.

Chapter 3 will introduce the reader to Bayesian statistics. This introduction will

be followed by a detailed explanation of what HMMs are and how they work. The

main types of problems HMMs are used to solve and the math behind the solutions

will be discussed at length.

To increase understanding as to why a generative approach was taken, Chapter 4

and Chapter 5 will introduce domain specific languages (DSLs) and code generators.

These chapters will focus on what DSLs and code generators are, their advantages

and disadvantages, and how they are relevant to the problem at hand.

Chapter 6 will explain the infrastructure of the HMM Generator. There will be

an introduction to the various components contained therein, followed by examples of

domain-specific terms, and finally an example program which shows how the HMM

Generator works.

In Chapter 7 the various HMM implementations across languages will be compared

and contrasted. Some design decisions will be introduced, and the HMM implemen-

tation file written in the DSL will be broken down and compared with the other

language implementations.

Chapter 8 will cover the various stages of testing for the HMM Generator. This

will test to ensure that the generator produces output code, that the code compiles

and runs, and that the results obtained from running the program are accurate.

3

Chapter 2

Requirements

In a very general sense there is one main requirement for this project, which is to

create a code generator that will produce usable code for handling HMMs.

However, that requirement can be broken down into a series of others. These re-

quirements cover the code generator, the domain specific language, and the generated

source code itself.

2.1 Code generator requirements

First off, the code generator should use a domain specific language for defining the

desired output source code. The generator should also be able to interpret design

choices at a high level and modify the desired source code based on those choices (for

example, changing one parameter to create a different implementation for handling

the same types of problems). The generator must be able to translate the imple-

mentation designed in the DSL into a representation of the given output language

internally before outputting any source code. Finally, the generator must be able to

4

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

actually output the source code into a usable file format.

2.2 DSL Requirements

The end goal of the DSL design is to be able to represent certain aspects of the

problem domain in a simple manner such that domain experts will find the terminol-

ogy familiar. For example, the DSL must include a way to initialize matrices with

probability values (as that is a major component in dealing with HMMs) as well as

performing computations on matrices. It must also be able to handle summation

over a specified range (and other similar mathematical operations) in a straightfor-

ward manner. The DSL must also include options for design choices (such as scaling,

which will be explained later) that the generator can use to modify the final version

of the ouput source code.

2.3 Generated source requirements

The final generated source code has to meet several requirements. First, it must

be able to compile without any person performing modifications to it. It must also

contain the appropriate algorithms for handling HMMs and they must be able to be

run. Finally, the code itself must also be correct in that the results obtained from

running the generated code on a hidden Markov model are accurate.

5

Chapter 3

Bayesian Statistics

Note: Much of the information covered in the following two sections is based

on Bolstad (2007).

3.1 An Introduction

Bayesian statistics is named for Thomas Bayes who proved a special case of what is

now known as “Bayes’ theorem”. The general version of the theorem was actually

introduced by Pierre-Simon Laplace who came after Bayes. The most common form

of Bayes’ theorem states the following:

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

What that means depends on the interpretation of probability, as one can look at the

Bayesian or frequentist interpretations.

6

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Frequentist Vs. Bayesian Statistics

The simplest explanation of the difference between frequentist and Bayesian statistics

is that frequentist statistics looks at P(D|H) whereas Bayesian statistics look at

P(H|D) where H is a hypothesis and D is data. They have different interpretations

of what “probability” is.

This means frequentist statistics look at the proportion of outcomes. Essentially

the data may come out differently if the experiment is repeated and the hypothesis is

either true or false (but which of the two is unknown). The name “frequentist” comes

from the expected frequency of observing the data given some hypothesis. A fre-

quentist would essentially think of probability as the frequency with which something

would happen, in a lengthy series of trials.

Bayesian statistics, on the other hand, look at probability as the degree of belief

in the hypothesis. It takes into account prior data to update the degree of belief

in a given hypothesis and as new data emerges the probability can be consistently

updated.

An example of the difference (portrayed humorously) can be found in Figure 3.1.

In the example we see the frequentist approach of looking at the data: they determine

the probability of randomly rolling two dice and having both come up six, then

presume the hypothesis correct based on the p-value being less than the significance

level. The Bayesian approach while not explicitly stated in the example would start

off the same way (by computing the probability of the dice roll coming up with two

sixes), but then the degree of belief is updated based on prior knowledge (from the

time the sun formed until today it has not gone nova, there is no evidence that the

sun was approaching nova) and the Bayesian statistician’s degree of belief in the

7

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Figure 3.1: A look at the difference between frequentist and Bayesian statisticians.

hypothesis becomes negligible.

3.2 Bayesian Inference

Bayesian inference is a method of inference using Bayes theorem (Equation 3.1). If we

were to call “A” our hypothesis, and “B” our evidence, then the prior probability P (A)

is the probability of the hypothesis before observing any evidence. The posterior

probability P (A|B) is the probability of the hypothesis given the observed evidence.

P (B|A) is known as the likelihood of observing the evidence given the hypothesis.

The marginal likelihood P (B) is the likelihood of the evidence without taking into

account any other variables. The marginal likelihood remains constant across all the

hypotheses that are being considered. Note that for different hypotheses, the only

8

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

factors that affect the posterior probability are the prior probability and the likelihood

since the marginal likelihood does not change across different hypotheses.

Essentially that means that the posterior probability is determined by the initial

likeliness of a hypothesis and how compatible that hypothesis is with the observed

evidence. This makes sense rationally as it means that a hypothesis should be rejected

if the evidence does not match up with it, or if the hypothesis was extremely unlikely

in the first place. To clarify, consider the following: A statistician decides to purchase

something from an ice cream truck nearby, I have the following four hypotheses

1. H1: The statistician purchases an ice cream cone

2. H2: The statistician purchases a popsicle

3. H3: The statistician purchases a turkey sandwich

4. H4: The statistician purchases nothing

Now consider the following two scenarios:

1. The statistician enters the room holding an ice cream cone. This evidence

supports H1 and opposes the other three.

2. The statistician enters the room holding a turkey sandwich. While this evidence

would seem to support H3, the prior belief in H3 (that one can buy a turkey

sandwich from an ice cream truck) is extremely small and so the posterior

probability remains small.

9

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

3.3 Introduction to Hidden Markov Models (HMMs)

In order to understand what a hidden Markov model is, one must first understand

what constitutes a Markov model. A Markov model is a stochastic model (it models

a process where the state is dependent on previous states in a non-deterministic way)

that assumes the Markov property (Baum and Petrie, 1966).

A stochastic process with the Markov property is one wherein the conditional

probability distribution of future states depends not on the sequence of events leading

up to the present state, but on the present state alone.

A hidden Markov model gets its name from the fact that it is a model assumed

to be a Markov process with some hidden (unobserved) states. Note that the term

“hidden” refers to the actual sequence of states that the model passes through and

not on any of the actual parameters of the model. On the other hand, simpler Markov

models have states which are directly visible to the observer. The difference then is

that an HMM looks at the output (which is state dependent) to infer the sequence

of states. This is done through analysis of the probability distributions of each state

over the possible outputs.

HMMs can be used for a wide array of applications, however they boil down to

one or more of three fundamental problems (Stamp, 2004). The three problems are

as follows:

1. Determine the likelihood of an observed sequence of observations given a model.

2. Given a model and an observation sequence, find the most likely state sequence

for the underlying model.

3. Find the model that maximizes the probability of a given observation sequence

10

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

using that sequence, the number of states in the model, and the number of

possible observations in the model. This is commonly called training a model

to best fit the observed data.

These problems (and their solutions) will be discussed in more detail in Section 3.4.

Hidden Markov models have many current real-world applications including (but

not limited to) cryptanalysis, machine translation, gene prediction, time series anal-

ysis, and speech recognition. Speech recognition was actually one of the earliest ap-

plications of HMMs (Baker, 1975). The problem of speech recognition can be solved

fairly easily using the solution to problem 3 above. By training different models to

recognize different words (or phonemes), a segment of speech can be analysed over all

the models and the individual words (or phonemes) can be identified. Many speech

recognition softwares allow users to train the models based on their own speech pat-

terns. This is a great advantage as it enables the software to account for particular

accents or speech mannerisms that may be uncommon in the general population.

3.4 The Math behind Hidden Markov Models

This section will be based heavily on Stamp (2004).

In order to show the mathematics behind HMMs, some terms must first be defined.

For a model λ = (A,B, π) let:

• N = Number of states in the model

• M = Number of observation symbols

• Q = (q0, q1, ..., qN−1) = Distinct states of the Markov process

11

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

• V = Set of possible observations

• π = Initial State Distribution (1×N) row stochastic matrix

• A = {aij} = State Transition Probabilities (N ×N row stochastic matrix)

• B = {bj(k)} = Observation Probability Matrix (N × M row stochastic

matrix)

• T = Length of the observation sequence

• O = (O0,O1, ...,OT−1) = An observation sequence

Where

aij = P (state qj at t+ 1| state qi at t)

bj(k) = P (observation k at t|state qj at t)

Put more simply, aij is the probability of transitioning to state qj from state qi

directly and bj(k) is the probability of observing k while in state qj . With that in

mind, the three fundamental problems (from Section 3.3) can be solved as follows.

Determine the likelihood of a sequence of observations

Solving this problem requires finding the likelihood of a sequence of observations (P (O|λ)).

Let S = (s0, s1, ..., sT−1) be a sequence of states. Now, from the definition of B

we have

P (O|S, λ) = bs0(O0)bs1(O1) · · · bsT−1
(OT−1).

12

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Also, from the definitions of π and A we see that

P (S|λ) = πs0 × as0,s1 × as1,s2 × · · · × asT−2,sT−1
.

Now since

P (O, S|λ) =
P (O ∩ S ∩ λ)

P (λ)

and

P (O|S, λ)P (S|λ) =
P (O ∩ S ∩ λ)

P (S ∩ λ)
· P (S ∩ λ)

P (λ)
=

P (O ∩ S ∩ λ)

P (λ)
,

therefore

P (O, S|λ) = P (O|S, λ)P (S|λ).

To determine P (O|λ) all possible state sequences must be accounted for, thus

the solution is to sum over all possible S like so:

P (O|λ) =
∑
S

P (O, S|λ)

=
∑
S

P (O|S, λ)P (S|λ)

=
∑
S

πs0bs0(O0)as0,s1bs1 · · · asT−2,sT−1
bsT−1

(OT−1)

Generally computing this directly is infeasible (requiring ∼ 2TNT multipli-

cations) (Stamp, 2004). However, there exists an efficient algorithm for computing

P (O|λ) which is known as the α-pass or forward algorithm.

13

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

The algorithm requires a definition of

αt(i) = P (O0,O1, · · · ,Ot, st = qi|λ) (3.2)

for t = 0, 1, . . . , T −1 and i = 0, 1, . . . , N −1. The term αt(i) is known as the

probability of a partial observation sequence up to time t with the process in state

qi at time t.

The forward algorithm is as follows:

1. Let α0(i) = πibi(O0) for i = 0, 1, . . . , N − 1

2. For i = 0, 1, . . . , N − 1; t = 1, 2, . . . , T − 1 compute:

αt(i) =

[
N−1∑
j=0

αt−1(j)aji

]
bi(Ot)

3. Then (from Equation 3.2)

P (O|λ) =
N−1∑
i=0

αT−1(i) (3.3)

This will be covered again in Chapter 7.

Find the most likely state sequence

The most likely state sequence can be defined by taking either the HMM approach

or the dynamic programming approach. The HMM approach wants to maximize

the expected number of correct states, whereas the dynamic programming approach

14

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

wants to find the highest overall scoring path. These solutions do not necessarily have

to be the same. For the purposes of this thesis, the HMM approach will be used.

The HMM approach begins with the definition of the β-pass (or backward algo-

rithm).

The algorithm requires a definition of

βt(i) = P (Ot+1,Ot+2, · · · ,OT−1|st = qi, λ) (3.4)

for t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1. The backward algorithm is

similar to the forward algorithm, except that it measures the partial probability after

time t. Computing the βt(i) will be covered in Chapter 7.

One more definition is required, and that is:

γt(i) = P (st = qi|O, λ) (3.5)

for t = 0, 1, . . . , T − 2 and i = 0, 1, . . . , N − 1. Now, since it is known

that αt(i) determines the relevant probability up to time t and βt(i) measures the

relevant probability after time t, the most likely state at time t is the state qi which

maximizes

γt(i) =
αt(i)βt(i)

P (O|λ)
(3.6)

over the index i.

15

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Training the model

To train the model, the dimensions N and M are known (and fixed), but the ele-

ments of A,B, and π need to be determined (and they must remain row-stochastic

matrices).

The first necessary step is to define “di-gammas”

γt(i, j) = P (st = qi, st+1 = qj|O, λ) (3.7)

for t = 0, 1, . . . , T − 2 and i, j ∈ {0, 1, . . . , N − 1}. This γt(i, j) is the

probability of transitioning to state qj at time t + 1 from state qi at time t. Di-

gammas are related to gamma (γt(i) is related to γt(i, j)) by:

γt(i) =
N−1∑
j=0

γt(i, j).

Another way to write the di-gammas (in terms of α, β,A and B) is

γt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
. (3.8)

Finally it is time to re-estimate the value of π,A, and B which is done as follows.

For i = 0, 1, . . . , N − 1

πi = γ0(i). (3.9)

16

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

For i = 0, 1, . . . , N − 1; j = 0, 1, . . . , N − 1

aij =
T−2∑
t=0

γt(i, j)

/
T−2∑
t=0

γt(i). (3.10)

For j = 0, 1, . . . , N − 1; k = 0, 1, . . . ,M − 1

bj(k) =
∑

t∈{0,1,...,T−2}
Ot=k

γt(j)

/
T−2∑
t=0

γt(j). (3.11)

This is done in many iterations, allowing the model to be trained until P (O|λ)

ceases to increase by some predetermined threshhold or the maximum number of

iterations is met.

The full algorithm for computing and training an HMM will be described in detail

in Chapter 7.

17

Chapter 4

Domain Specific Languages

The following is an introduction to domain specific languages to provide a baseline

for some of the more important concepts behind DSLs. This chapter is based in part

on similar work with DSLs from Beyak (2011), Costabile (2012), and Curutan (2013).

4.1 What are DSLs?

Domain specific languages are exactly what their name suggests. They are languages

that have been developed to tackle a specific set of problems (known as the problem

domain). Domain specific languages are typically very limited in their scope, but are

able to describe their respective problem domains in a concise and efficient manner.

One example of a very widely known DSL is HTML (commonly used in website

design). DSLs are generally not Turing complete, and therefore are not typically used

in the same manner as general-purpose languages, however, there are some examples

of Turing complete DSLs (such as PostScript).

18

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

One of the main challenges for designing a DSL comes in understanding the prob-

lem domain. If the problem domain is not sufficiently well understood there will be

ambiguity when it comes to translating a DSL program into its desired representa-

tion. A well understood domain will have generally standardized terminology, thus

allowing those who work in the problem domain to express their ideas in a consistent

manner. That consistency allows users of a DSL to work with familiar terminology

in defining their desired output.

Consistency and ease of expression are one of the primary goals of DSLs. By

simplifying how one would express common tasks in the problem domain with respect

to conventional programming languages, it allows for experts in that domain to more

effectively implement solutions to complex problems.

DSLs can be implemented through interpretation or code generation methods.

Interpretation is when some line(s) of program text (written in the DSL) are parsed

at runtime and a result is immediately produced. On the other hand, code generation

allows for the program text to be parsed and produces an intermediary output, which

can then be processed seperately to provide the desired behaviour (Fowler, 2010).

Code generation will be discussed in more detail in Chapter 5.

4.2 DSLs: Embedded vs. External

Embedded (also called “internal”) and external (also called “standalone” or “free-

standing”) DSLs are distinct based on their design and implementation. Each of

these DSLs comes with its own specific advantages and disadvantages.

Embedded DSLs get their name from the fact that the DSL is embedded into a

general purpose host language (typically a high-level language). The DSL is created

19

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

through adding specialised constructs to the host language and essentially creating a

somewhat distinct language within.

One of the major benefits of an embedded DSL is that it requires relatively little

effort to create since the host language’s compiler handles the processing. Another

benefit is that any useful functionality of the host language can be utilised in the

design and implementation of the DSL. As for disadvantages, the DSL is limited by the

host language’s syntax and grammar rules. This can limit the overall expressiveness

of the language. Another potential disadvantage is that those who will be working

with the DSL will need a higher level of familiarity with the host language to use it

effectively.

External DSLs are not embedded in a host language. This gives them the ability

to have incredibly customizable syntax and grammar rules, leading to a much richer

and more expressive language for the problem domain. The language can also be

made much more intuitive to those familiar with the problem domain. The main

disadvantage of an external DSL is the lack of an existing compiler. Design and

implementation of a compiler can be an incredibly complex task depending on the

scope of the language.

4.3 Relevance

From Chapter 3 we can see that the problem domain (Bayesian Statistics) is a very

rich and complex domain. For this project it was decided that a subsection of that

domain would be taken, specifically one focusing on Hidden Markov Models (as seen

in Sections 3.3 and 3.4).

The chosen problem domain is specialized enough that a DSL would allow for

20

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

domain experts to create optimized code for dealing with Hidden Markov Models.

There are many design decisions that could affect the final output code in terms of

efficiency and scalability (these were touched on in Section 3.4 and will come up again

in Chapter 7), thus a DSL allows the users to accomodate for their needs with a trivial

amount of time and effort.

For the purposes of the HMM Generator, an embedded DSL was created using

Haskell as the host language in order to take advantage its pattern matching capa-

bilities.

21

Chapter 5

Code Generation

This chapter will expand upon code generation as mentioned in Chapter 4. Specifi-

cally it will be referring to source code generation.

5.1 What is code generation?

In the simplest terms, code generation is an automated method of creating source

code using a higher-level language (Mur, 2006). Compilers are a good example of

code generators as they take higher level programming languages and convert them

into machine code. However, source code generators are a little different in that they

take a high level abstract language (a DSL for example) or model and generate a new

source file from it. For example the HMM Generator outputs source code in the C

language.

22

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

5.2 How does code generation work?

Code generation goes through a series of stages. Once the high level source program

is written, the following steps are performed when the generator is run:

1. Compile the framework and parser

2. Parse the high-level source

3. Process the parsed code

• Part of this involves running optimization algorithms (if implemented)

4. Translate the processed code into the output language

5. Output the new source in the output language

The final output code must then be compiled separately before being used. Also

note that processing of the initial source code can be done in a single pass (in some

cases), however, it is usually done in multiple passes to run any optimization algo-

rithm(s) in succession.

5.3 Why use code generation?

With code generation there is no restriction on what language the output file must

be in. In the case of embedded DSLs the host language can be used to write the

parser and once the program code is written in the DSL, the host language can be

forgotten about altogether and the generated source can be in any language. This is

especially useful when dealing with languages that do not have the tools to support

DSLs or systems that only support those languages. If a system were to only support

23

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

compiled C, the embedded DSL could be written in any host language as long as the

generator was set up to translate the DSL into C code. This allows for flexibility in

design and implementation without needing to make any compromises as to the input

language.

Code generators also allow for decisions to be made in the high level source that

can change the way the output code is generated. This allows optimization to take

place in the generation phase and results in more efficient output code. That code

will then go through its own compiler optimizations at compile time, which can lead

to even more efficient code.

The extra compilation step (Step 1 of Section 5.2) along with the need for com-

pilation of the final generated code can be seen as a disadvantage as it increases the

complexity of the finished product, which may lead to longer testing and debugging

periods. However, for the scope of the HMM Generator the advantages outweigh the

disadvantages.

24

Chapter 6

The HMM Generator

The generator itself is comprised of a series of components that work in sequence to

produce the final output code. These components include:

1. A series of Abstract Syntax Trees (ASTs).

2. A translator for moving from one AST to another.

3. A printer which outputs the final output code.

4. An assortment of helper functions.

5. An implementation file.

6. A design file.

Each of the components will be described in detail in the following sections.

25

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

6.1 The Components

The ASTs

Note: for the full ASTs, please see Appendix A.

There are three main abstract syntax trees for the HMM Generator. They are the

design (or choice) AST, the internal language AST, and a trimmed-down C language

AST.

The design AST (Appendix A.1) is solely made up of possible design choices. The

data type “Choices” shows which are available to the user currently. The current

version of the generator can support choice of language (“Lang”), whether or not to

use scaling (“Scale”), and how many iterations should be performed (at max) while

training a model (“MaxIt”). Also note that the “Library” type is not used within the

AST itself, but it is used elsewhere in the source files.

The internal AST (Appendix A.2) is the “language” that the HMM Generator

implementation files are written in. The implementation files themselves will be

explained later on. There are six key components of the AST:

1. The Program Declaration

2. Global Declarations

3. Function Signatures

4. Parameter Declarations

5. Statements

6. Expressions

26

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

The program section of the AST is used to declare what the output program will

look like. A program must include design choices, a name, and a list of global dec-

larations. Global declarations include any class, macro, or function declarations that

will be necessary in the final code. The function signatures are analogous to func-

tion prototypes in C; they detail the name, type, and parameters of each function.

Parameter declarations are fairly self-explanatory as each parameter only needs a

name and a type. Statements control the flow and computations in the output code.

They include (but are not limited to) assignments, conditionals, and function calls.

There are certain statements that are specific to the problem domain (for example

MatrixBlockInit), and the comments underneath them explain what they do in more

detail. Statements contain expressions that describe what is to be computed. The

internal AST also has some domain-specific expressions (for example InitAndSum).

Please note that variables are considered expressions by the AST as they are used in

computations. The AST also contains some functions for simplifying the syntax of

the language, which will be explained in the example in Section 6.4.

The C AST (Appendix A.3) is a trimmed-down representation of the C language,

written for this generator specifically. Only the given statements and expressions are

actually necessary for creating the HMM output code. Please note that any code

written in the C AST is automatically generated by the translator. The “Program”

section of the AST is analagous to the internal AST program definition, just as the

declarations are analagous to a combination of the function signatures and global

declarations from the internal AST. Methods are fairly self-explanatory (they require

a declaration and a block of statements that will be executed when that method is

run) and are analogous to the function declarations from the internal AST. Statements

27

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

stmt (I.Alloc (I.NDArr n s) t) =

let name = I.NDArr n s

m = (I.Malloc t (Length name)) in

do

declares n (ptr t)

stmt (I.Assign name (m))

Figure 6.1: Translating an “Alloc” statement from the internal AST to the C AST

and expressions in the C AST fill the same roles as in the internal AST, however, the

statements and expressions found in the C AST are C-specific. Therefore there are

no specialised statements or expressions for the problem domain in this AST.

The Translator

The translator is an incredibly important component. It converts programs from the

internal AST format to the format of the output language’s AST (the C AST), com-

plete with converting each of the components therein. This means that it contains

functions for converting the more complicated functions into simpler C representa-

tions, for an example see Figure 6.1 which shows how a single statement like Alloc

is converted to the C AST. Note that the translation for this statement calls for

another (different) translation for it to complete. Many of the more complex transla-

tions require going through several calls before the translation of a single statement

will complete.

The Printer

The printer renders the final output code in the proper syntax of the output language

(in this case C). Essentially the printer acts similarly to the translator, except instead

of moving between ASTs, it takes the C AST translation as input and outputs a C

28

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

retexpr :: String -> Expr -> Doc

retexpr self e = text "return" <+> expr self e <> semi

Figure 6.2: An example function from the printer

generate :: [Char] -> [Char] -> [D.Choices] -> IO ()

generate path alg ch =

if (elem (D.Lang C) ch)

then do outh <- openFile (path ++ alg ++ ".h") WriteMode

hPutStrLn outh $ render $ C.header alg ch

hClose outh

outh <- openFile (path ++ alg ++ ".c") WriteMode

hPutStrLn outh $ render $ C.code alg ch

hClose outh

else error "Invalid parameters."

Figure 6.3: The generate function in the design file

source file. Take, for example, the print function for retexpr shown in Figure 6.2.

When called from the statement printing function it formats a return statement in

C’s grammar. If the code being generated had the line “Return (Int 0)” in the C

AST translation, that would become “return 0;” in the final output code. Note that

“semi” is a helper function for producing semicolons.

The Rest

The design file is written by the user to select the design choices that they wish to

have implemented in the final version of the output code. It is also the file that houses

the “generate” function (see Figure 6.3) which sets up the file names for the output

code files and renders them. An example of the function used to generate the output

code based on certain design decisions can be seen in Figure 6.4. Note that “D.Lang

C” means the output code should be written in C, “D.Scale Scaled” means that the

final output code should use the scaled versions of the implementation (which will

29

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

test2 = generate "" "HMMProg" [D.Lang C,

D.Scale Scaled ,

D.MaxIt 1000]

Figure 6.4: Setting up the generator with specific design choices

dot = text "."

ques = text "?"

hash = text "#"

coldash = text ":-"

pipe = text "|"

dblslash = text "//"

dbldash = text "--"

backslash = text "\\"

unit = brackets empty

amp = text "&"

Figure 6.5: An example of some helper functions for the printer

be explained in depth in Chapter 7), and “D.MaxIt 1000” which sets the maximum

number of iterations while training to 1000.

The helper functions are, for the most part, shorthand notation for certain terms

used by the printer (see Figure 6.5). There is also a helper function included herein

to set the value of the maximum number of iterations when training a model based

on choices made in the design AST (Appendix A.1).

The implementation file is written in the internal language of the DSL (ASTIn-

ternal from Appendix A.2) and covers the implementation of all of the applicable

variants based on the possible design choices from the design AST (Appendix A.1).

The implementation file will be covered in Section 7.6. This file is used in conjunction

with the design file to produce the final output code.

30

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

6.2 Some domain specific terms

This section will introduce some of the terms that were created specifically for the

DSL as well as explain their use and relevance to the project. For a full listing of the

statements and expressions included in the DSL please refer to Appendix A.2.

The first expression we will look at is the “Sum” expression shown here:

Sum Name Expr [(Expr , Expr)]

The “Sum” expression takes a string (shown as “Name” in the code) which is the

variable to perform the summation over, along with the array being summed over (the

first Expr in the definition) and a list of pairs containing a variable (of type Expr) to

store the resulting sum in, and any mathematical computation to be included in the

summation. For example the code

Sum i array [(r e t v a l , some ca lc)]

would be equivalent to

ret val =

length(array)−1∑
i=0

some calc

where “some calc” is a calculation dependent on ‘i’.

Next we will look at is the “ProdSeq” expression shown here:

ProdSeq Name Expr [(Expr , Expr)]

The “ProdSeq” expression uses the exact same terms as the “Sum” expression. The

main difference of course comes to the implementation. This “ProdSeq” is essentially

equivalent to Π notation. As an example look at

31

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

ProdSeq i array [(r e t v a l , some ca lc)]

would be equivalent to

ret val =

length(array)−1∏
i=0

some calc

where “some calc” is a calculation dependent on ‘i’.

There are a few more expressions listed in Appendix A.2, but they should be fairly

self explanatory. Next we will move on to statements.

Consider the following statement:

UniformDist Expr Name

The “UniformDist” statement takes an array / matrix (shown as “Expr”) and a

placeholder string (shown as “Name” in the code) and initializes the array / matrix

with uniform probability values. Essentially it produces an uninformative prior (which

will be covered in Section 7.4). For example the code

UniformDist p i i

would be equivalent to

pii = 1/N, i ∈ 0, 1, . . . , N − 1

where “N” is the length of the array “pi”. Similarly there is a non-uniform distribution

statement as well (see Appendix A.2) for creating a row-stochastic matrix of non-

uniform probability values.

32

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

What if we wanted to initialize a matrix with different values? Or perhaps only

initialize a certain block of a matrix? That is where the “MatrixBlockInit” statement

comes into play.

Matr ixBlockIn i t Expr [Expr] [(Expr , Expr)] Expr

The “MatrixBlockInit” statement takes a matrix (the first “Expr”), a list of indices

(shown as “[Expr]” in the code), a list of range pairs (shown as “[(Expr,Expr)]”)

which are of the form (start,end), and a value expression (the final “Expr”) term.

The indices and range pairs are used to determine where in the matrix to initialize,

then the matrix is initialized in those places with the given value expression. For

example the code

Matr ixBlockIn i t array [i , j] [(0 , 4) , (0 , 2)] va l

would be equivalent to

arrayi,j = val, i ∈ 0, 1, . . . , 4, j ∈ 0, 1, 2.

Having each of these dedicated terms allows for some abstraction of the implemen-

tation details so a domain expert would be able to express their needs in a familiar

language. Introducing a sum or sequence of products is now as simple as stating that

one is needed, and there is no need to worry about the underlying implementation

details. Initialization of matrices has also been abstracted away from the implemen-

tation details. This section was meant to be an introduction to some of the DSL

terminology. Again, for the full list please see Appendix A.2.

33

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

6.3 Constructing a program using the DSL Syntax

Now that the concepts have been introduced, we will look deeper into the syntax of

the DSL. To start with, a program has a fairly simple definition:

Program = Program [D.Choices] Name [GlobalDecl]

The entire program is essentially just a list of design choices, the program name,

and a list of all of the global declarations. The global declarations themselves are:

GlobalDecl = CDecl Name [ParamDecl]

| MACDecl Name String

| Funct FuncSig [Stmt]

A macro declaration (MACDecl) is the simplest global declaration. It is used to

define any global values or functions that may be called in the generated code (for

example, in the final generated C code there will be a global value for the maximum

number of HMM training iterations). To define a macro, all that is needed is a name

to be referenced (a string) and what the value of that macro should be (another

string).

A function declaration requires a function signature and a list of statements. The

function signature is as follows:

FuncSig = FDecl Type Name [ParamDecl]

The function signature requires the return type, the name of the function (a string),

and a list of parameter declarations which are of the form:

ParamDecl = PDecl Type Name

34

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Essentially the “ParamDecl” term is used to declare the name and type of a variable

being passed to the function. Parameter declarations are also used in class declara-

tions to specify the members of a class and their types. An example of their use can

be seen in the class declaration for HMMs:

hmmDecl :: [D.Choices] -> GlobalDecl

hmmDecl _ = CDecl "HMM" [PDecl int n_ , PDecl int m_ , PDecl (ptr dbl)

initProbs_ ,PDecl (ptr dbl) transMatrix_ , PDecl (ptr dbl)

obsMatrix_]

This declaration shows that the class named “HMM” has the following parameters:

‘n’ and ‘m’ of type int; “initProbs”,“transMatrix”, and “obsMatrix” of type double*

(a pointer to a double in C, or conceptually an array/matrix). Also, note that the

pointer type (ptr) is not a standalone type in the DSL. The syntax for pointers can

be seen under the “Type” datatype in the internal AST (Appendix A.2). Essentially

it is a function from Type→ Type (so given any of the other types, a pointer of that

type can be created).

Now when it comes to statements, each statement has its own syntax. The full

list of statements can be seen in Appendix A.2, but some of them are not very self-

explanatory. Alongside statements are expressions. A statement will always contain

at least one expression (though the syntax may not appear to in all cases, see “Block”).

Expressions, on the other hand, never contain statements.

35

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

6.3.1 Expressions

Variables and values are expressions as seen in this section of the “Expr” datatype

definition:

| Var Variable

| Str String

| Int Integer

| Dbl Double

| NDArr Array [Size]

Breaking these down we have variables, strings, integers, doubles, and N-dimensional

matrices. For strings, integers, and doubles the syntax is simply the expression type

(Str, Int, or Dbl) followed by the value. For example, the syntax for the integer zero

would be “Int 0”, whereas if it were a double it would be “Dbl 0”, or if it were a

string it would be ‘Str “0”’.

Variables are almost identical to strings, as “Variable” is a string. However, they

are intended to be used where a variable would be found in the code (for example, the

variable ‘i’ would be found in many places in the HMM implementation and would be

written as ‘Var “i”’). The main difference between variables and strings comes when

they are being translated from the internal AST, as the translator will reject strings

where a variable is required.

Finally, the N-dimensional matrix syntax uses an “Array” (which is just a place-

holder similar to “Name” or “Variable” in that it is a string that represents the name

of the N-D matrix), and a list of sizes. The list of sizes is the size of each dimension of

the matrix, in order, and the sizes are represented by expressions. The actual syntax

for a 2D matrix named “example” with 3 rows and 4 columns would be:

36

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

NDArr "example" [(Int 3), (Int 4)]

Now that we have taken a look at matrices and classes, there needs to be an

expression to retrieve values/access members within them. This is where the derefer-

encing expressions come into play. There are two different dereferencing expressions,

one for classes (“Deref”) and one for N-dimensional matrices (“NDArrDeref”). They

can be seen here:

Deref Expr Expr

| NDArrDeref Expr [Expr]

In each case, the first Expr is the data structure being dereferenced (a class for Deref,

or an NDArr for NDArrDeref). For “Deref”, the second Expr is the member of the

class being referenced (for example, from the HMM declaration that could be any of

‘n’,‘m’,“initProbs”,“transMatrix”, or “obsMatrix”). However, in the “NDArrDeref”

the second term is a list of expressions, where each is an index value.

For example, to obtain the [‘i’,‘j’]th element in the matrix “Example” would look

like:

NDArrDeref Example [(Var "i"), (Var "j")]

There are also functions for each version of dereference which were created to

simplify the syntax. They are:

(@:) :: Expr -> Expr -> Expr

x @: e = Deref x e

(!:) :: Expr -> [Expr] -> Expr

x !: e = NDArrDeref x e

37

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Op Syntax Meaning
Expr :* Expr Multiply two expressions together
Expr :+ Expr Add two expressions together
Expr :/ Expr Divide the first Expr by the second
Expr :- Expr Subtract the second Expr from the first
Expr :> Expr Check if the first Expr is greater than the second
Expr :< Expr Check if the first Expr is less than the second
Expr :== Expr Check if two expressions are equal
Expr :& Expr Logical AND
Neg Expr Negate the expression

Table 6.1: Math operations using expressions

Essentially, these functions provide an infix notation for the dereferencing expressions.

The example of NDArrDeref above would now look like:

Example !: [(Var "i") ,(Var "j")]

Next up there are unary and binary mathematical operations which can be per-

formed using expressions. They use prefix and infix notation for unary and binary

computations respectively. Table 6.1 shows each operator’s syntax, and their mean-

ings. Note that the logical AND operator and the operations that check values all

return boolean truth values.

Expressions also cover the values returned from function calls, so there exists:

| Call Name [Expr]

Where “Name” is the name of the function to be called (a string) and there is a

list of arguments to be passed to the function. This expression is only used when

calling functions which return values. There is a seperate statement for handling

procedure calls (used for calculating and manipulating values in memory, but not

directly returning any).

38

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Finally there is the “Malloc” expression which is currently an artifact left over from

earlier versions and only used by the “Alloc” statement. The rest of the expressions

were covered in Section 6.2, so it is time to take a look at statements.

6.3.2 Statements

To start, we will take a look at defining variables, assigning values to them, outputting

them, and returning from functions. Each of those statements can be seen here:

| Define Type Expr

| Assign Expr Expr

| Out Expr

| Return Expr

These should be fairly self-explanatory. “Define” requires a type and an expression

for a “Var” to define a variable. “Assign” takes a “Var” as the first expression and

any expression as the second, assigning the expression to the variable. “Out” simply

creates an output statement (such as printf in C) out of an expression, and “Return”

is used at the end of a function definition to return an expression as the function’s

value.

The syntax for assignment and definition is fairly unwieldly, so a simplification

function was created for each. A simplification for defining and assigning simultane-

ously was also created. These simplifications can be seen below:

(%:) :: Name -> Type -> Stmt

x %: t = Define t (Var x)

(=:) :: Expr -> Expr -> Stmt

x =: e = Assign x e

(=%:) :: Expr -> (Expr , Type) -> Stmt

39

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

x =%: (e,t) = Block [Define t x, Assign x e]

The following are examples of the functions’ use.

• Defining a variable ‘x’ of type “int”:

"x" %: int

• Assigning a variable ‘x’ a value of 4:

(Var "x") =: (Int 4)

• Combining the last two statements into one:

(Var "x") =%: ((Int 4),int)

Since the generator is outputting to the C language, there must be some form of

memory management. Specifically, arrays/matrices require memory allocation. The

generator handles this with the “Alloc” statement, seen here:

Alloc Expr Type

Alloc requires an N-dimensional matrix as the expression, and the type of that matrix.

From there it declares the variable (from the NDArr’s name) with a pointer of the

given type. Then, by looking at the NDArr’s size and type, the generator computes

the amount of memory to allocate for the given matrix. The name “Alloc” may be

misleading, but it can essentially be thought of as a definition statement specific to

“NDArr” terms. The translation of an “Alloc” statement can be seen in Figure 6.1.

For a usage example, if a matrix of integers named “A” is being declared of size 2*2,

then the “Alloc” statement would look like:

40

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Alloc (NDArr "A" [2 ,2]) int

The following control flow statements are also included presently as they are cur-

rently necessary. However, at some point in the future they may be abstracted out

and replaced with higher level statements:

| For Expr Expr Expr [Stmt]

| If Expr [Stmt] [Stmt]

| CondLoop Expr [Stmt]

The “If” statement takes a boolean operation as the first expression, followed by a list

of statements to be performed if that expression evaluates to true, and finally a list

of statements to be performed if the expression evaluates to false. The “Condloop”

statement is a loop that requires a conditional expression (essentially an operation

that returns a boolean value) and a list of statements to be performed so long as that

expression returns a value of true.

The “For” statement takes a loop variable (typically a placeholder variable like ‘i’

or ‘j’) followed by expressions for the start and end values of the loop (for example,

start at zero and end at ‘N’), and then finally a list of statements to be performed on

each iteration of the loop. However, the “For” loop is now largely deprecated as the

following “MatrixComps” statement has been created:

MatrixComps [Expr] [(Expr ,Expr)] [Stmt]

This statement essentially works as a multi-dimensional “For” as it performs the

list of statements on each pass through the given list of indices [Expr] and list of

ranges [(Expr,Expr)]. This should look very similar to the MatrixBlockInit statement

covered in Section 6.2 as it performs very similarly.

41

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Finally is a statement alluded to at the end of Section 6.3.1, the procedure call

expression:

CallProc Name [Expr]

This statement is only used when calling procedures that perform calculations and

manipulate memory, but do not return a value themselves. From a C-language per-

spective, it can be seen as a way to call “void” methods.

6.4 Putting it all together: A simple Hello World

program

This section will showcase an example of all the parts of the generator working to-

gether to produce a simple “Hello World” program in C. The first step is to set up

an implementation file and a design file. For this simple “Hello World” program,

the generate code from Figure 6.3 can be used, and the only choice parameter being

passed will be “D.Lang C” to ensure that the output language will be C. The imple-

mentation file is pictured in Figure 6.6. Note that the implementation file is written

using the terminology from the internal AST (Appendix A.2). The program is named

“HelloProg” and it consists of one function named “hello” (which has a return type

of void in C). The function itself consists of a single “Out” statement which outputs

the expression “Hello World!” (which is a string).

With just those two files it is now possible to run the generator by compiling

everything and running the generate function. When invoked, generate will call the

“header” and “code” functions from the printer. Each of these functions takes the

42

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

module ImplHi where

import ASTInternal as I

import ASTDesign as D

helloProg :: [D.Choices] -> Program

helloProg ch = Program ch "HelloProg" [hello ch]

helloDecl :: [D.Choices] -> FuncSig

helloDecl _ = FDecl VoidType "hello" []

hello :: [D.Choices] -> GlobalDecl

hello ch = Funct (helloDecl ch) $

[Out (I.Str "Hello World!")

]

Figure 6.6: A “hello world” implementation in the HMM Generator

program contained in the implementation file as an input and generates the appro-

priate .h and .c file respectively.

Each of the “header” and “code” functions call the “toImp” function from the

translator on the implementation file. This function translates the program from using

the internal AST to the C AST and builds the appropriate library list, declarations,

and methods. The declarations and methods are translated by mapping the functions

shown in Figure 6.7 over the list of global declarations from the implementation.

Next the “header” and “code” functions call “printH” and “printC” (seen in Fig-

ure 6.8), respectively. The former builds and inserts a list of libraries into the header

file, followed by the prototypes of the C methods that will be used. To build those

prototypes, the “buildD” function (See Figure 6.9) is mapped over the declaration

list from the translated implementation. Similarly, the “printC” function includes

the necessary header file (which was just created) and then builds all of the meth-

ods from the method list in the translated implementation. It builds the methods

by mapping the “buildM” function (Figure 6.9) over the list of methods, which in

43

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

buildD :: I.GlobalDecl -> C.Declaration

buildD (I.MACDecl n v) = C.MACDecl n v

buildD (I.CDecl n pL) = C.SDecl n $ params pL

buildD (I.Funct decl _) = buildFS decl

buildFS :: I.FuncSig -> C.Declaration

buildFS (I.FDecl t n pL) = C.MDecl (typ t) n $ params pL

buildM :: I.GlobalDecl -> C.Method

buildM (I.Funct decl methlist) = C.Meth (buildFS decl) $ C.Block .

sm2s $ stmts methlist

buildM _ = C.NullMeth

Figure 6.7: Functions for translating declarations and methods to the C AST

printC :: Program -> Doc

printC (Program name _ _ mds) = hash <> text "include" <+> quotation

(text name <> text ".h") $$ vcat (map buildM mds)

printH :: Program -> Doc

printH (Program _ libs decls _) = libraries libs $$ vcat (map buildD

decls)

Figure 6.8: The “printC” and “printH” functions in the printer

buildD :: Declaration -> Doc

buildD (MACDecl name val) = hash <> text "define" <+> text (allcap

name) <+> text val

buildD (SDecl name pL) = text "typedef struct" <+> lbrace $$ nest 4

(members pL) $$ rbrace <+> text name <> semi

buildD (MDecl t name pL) = typ t <+> text name <> parens (params pL)

<> semi

buildD _ = empty

buildM :: Method -> Doc

buildM (Meth (MDecl t name pL) statements) = typ t <+> text name <>

parens (params pL) <+> lbrace $+$ nest 4 (stmt name statements)

$$ rbrace

buildM _ = empty

Figure 6.9: The functions for building the prototypes and methods in C

44

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

stmt self (Out n) = text "printf" <> parens (expr self n) <> semi

Figure 6.10: Printing the “Out” statement

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <limits.h>

void hello();

Figure 6.11: The “HelloWorld” header file

turn calls the appropriate code to convert to writable C code. For the “HelloWorld”

implementation that is the function seen in Figure 6.10 where “expr” (in this case)

returns “Hello World” in double quotes to denote a string.

The final source files can be seen in Figures 6.11 and 6.12 for the .h and .c files

respectively. Note that currently the libraries are predetermined based on the needs

of the HMM Generator, but they may be customizable in the future through the

design file.

#include "HelloProg.h"

void hello() {

printf("Hello World!");

}

Figure 6.12: The “HelloWorld” c file

45

Chapter 7

HMM Implementation

This chapter will look at the various implementations of Hidden Markov Models across

languages (Haskell, C, and the HMM Generator) based on the math from Chapter 3.

The algorithms for solving the three fundamental problems (see Sections 3.3 & 3.4)

will be explained in detail and the method for computing them efficiently will be

shown in each language.

First off, one must understand how HMMs are represented in each of the lan-

guages. In the Haskell version of the HMM implementation, the HMM datatype can

be found in Figure 7.1. The HMM in Haskell allows for values of any type (the set of

states/observations can be ints, strings, etc). These types are used to declare lists of

>data HMM stateType eventType =

> HMM { states :: [stateType]

> , events :: [eventType]

> , initProbs :: (stateType -> LogFloat)

> , transMatrix :: (stateType -> stateType -> LogFloat)

> , obsMatrix :: (stateType -> eventType -> LogFloat)

> }

Figure 7.1: HMM Representation in Haskell

46

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

typedef struct {

int m,n;

double *initProbs;

double *transMatrix;

double *obsMatrix;

} HMM;

Figure 7.2: HMM Representation in C

hmmDecl :: [D.Choices] -> GlobalDecl

hmmDecl _ = CDecl "HMM" [PDecl int n_ , PDecl int m_ , PDecl (ptr dbl)

initProbs_ ,PDecl (ptr dbl) transMatrix_ , PDecl (ptr dbl)

obsMatrix_]

Figure 7.3: HMM Representation in the HMM Generator

those types which will be populated by the state and observation values/names.

In the C implementation of the HMM code, HMMs are represented as depicted in

Figure 7.2. This struct only allows for an integer representation of states / observa-

tions, therefore only the lengths of the state and event lists are necessary in the code.

However, some bookkeeping will be necessary in order to translate between numeric

representations and meaningful names.

In the HMM Generator the HMM is represented as depicted in Figure 7.3. Note

that the terms in the comma-separated list are the members of the class (the class

being “HMM”). They correspond exactly to the C language implementation (“n,m”

are declared as being of type int and the matrices as double*). In order to fully

understand the definitions, refer to Chapter 6.

47

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

7.1 The forward algorithm

The algorithm for computing αt(i) (from Equation 3.2) is as follows:

1. Let α0(i) = πibi(O0) for i = 0, 1, . . . , N − 1

2. For i = 0, 1, . . . , N − 1; t = 1, 2, . . . , T − 1 compute:

αt(i) =

[
N−1∑
j=0

αt−1(j)aji

]
bi(Ot)

3. Then (from Equation 3.2)

P (O|λ) =
N−1∑
i=0

αT−1(i) (7.1)

Note that the forward algorithm can be computed recursively meaning it now re-

quires ∼ N 2T multiplications (an improvement over the previous ∼ 2TNT multi-

plications laid out in Section 3.4).

Comparing implementations of the forward algorithm

Please note that The HMM Generator version of this algorithm will be discussed in

Section 7.6.

Figures 7.4 and 7.5 show how the values for αt(i) are calculated in Haskell and C,

respectively. The Haskell implementation uses memoization for efficiency; however,

the actual calculations in both the C and Haskell versions are identical to those found

at the beginning of Section 7.1.

48

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

>alpha hmm obs = a_1

> where a_1 t state = (Memo.memo2 Memo.integral Memo.integral a_2) t

(sIndex hmm state)

> a_2 t’ state ’

> | t’ == 1 = (obsMatrix hmm (states hmm !! state ’) $ obs!t’)

> *(initProbs hmm $ states hmm !! state ’)

> | otherwise = (obsMatrix hmm (states hmm !! state ’) $ obs!t

’)

> *(sum [(a_1 (t’-1) state2)

> *(transMatrix hmm state2 (states hmm !! state ’)

) | state2 <- states hmm])

Figure 7.4: αt(i) computation in Haskell

double* alpha_array(HMM *hmm , int* obs , int num_obs){

int n = hmm ->n;

double* a = (double *) malloc(sizeof(double)*num_obs*n);

int i,j,t;

// printf ("\nT = %d\n", num_obs);

for (i = 0; i < n; i++){

a[i] = (hmm ->initProbs[i])*(getOMVal(i,obs[0],hmm));

// printf ("\ nAlpha [0][%d] = %f",i,a[i]);

}

for (t = 1; t < num_obs; t++){

for (i = 0; i < n; i++){

a[t*n+i] = 0;

for (j = 0; j < n; j++){

a[t*n+i] += a[(t-1)*n+j]*(getTMVal(j,i,hmm));

}

a[t*n+i] *= getOMVal(i,obs[t],hmm);

// printf ("\ nAlpha [%d][%d] = %f",t,i,a[t*n+i]);

}

}

return a;

}

Figure 7.5: αt(i) computation in C

49

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

>alpha_Array :: (Eq eventType , Eq stateType , Show eventType , Show

stateType) => HMM stateType eventType -> Array Int eventType ->

LogFloat

>alpha_Array hmm obs = sum [alpha hmm obs b_T state | state <-

states hmm] --Sum partial probabilities

> where b_T = snd $ bounds obs

Figure 7.6: α-pass in Haskell

double alpha_pass(HMM *hmm , double* a_A , int num_obs){

double ret_val;

int n = hmm ->n;

int i;

for (i = 0; i < n; i++){

// printf ("A[T-1][i] = %f\n",a_A[(num_obs - 1)*n+i]);

ret_val += a_A[(num_obs - 1)*n+i];

}

return ret_val;

}

Figure 7.7: α-pass in C

From there it is a very simple task to compute the final value of the α-pass by

summing over the index ‘i’ as shown in Equation 7.1. The necessary code for comput-

ing the final sums can be seen in Figures 7.6 and 7.7 for Haskell and C respectively.

50

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

7.2 The backward algorithm

The algorithm for computing βt(i) (from Equation 3.4) is as follows:

1. Let βT−1(i) = 1 for i = 0, 1, . . . , N − 1

2. For i = 0, 1, . . . , N − 1; t = T − 2, T − 3, . . . , 0 compute:

βt(i) =
N−1∑
j=0

aijbj(Ot+1)βt+1(j)

Please note that the solution to finding the optimal state sequence requires the

gamma values which will be discussed in Section 7.3.

Comparing implementations of the backward algorithm

Please note that The HMM Generator version of this algorithm will be discussed in

Section 7.6.

Figures 7.8 and 7.9 show how the values for βt(i) are calculated in Haskell and

C respectively. Again, the Haskell implementation uses memoization for efficiency,

however the actual calculations in both the C and Haskell versions are identical to

those found at the beginning of Section 7.2.

51

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

>beta hmm obs = b_1

> where b_T = snd $ bounds obs

> b_1 t state = (Memo.memo2 Memo.integral Memo.integral b_2) t

(sIndex hmm state)

> b_2 t’ state ’

> | t’ == b_T = 1

> | otherwise = sum [(transMatrix hmm (states hmm !! state

’) state2)

> *(obsMatrix hmm state2 $ obs!(t’+1))

> *(b_1 (t’+1) state2)| state2 <- states hmm]

Figure 7.8: βt(i) computation in Haskell

double* beta_array(HMM *hmm , int* obs , int num_obs){

int n = hmm ->n;

double* b = (double *) malloc(sizeof(double)*num_obs*n);

int i,j,t;

// printf ("\nT = %d\n", num_obs);

for (i = 0; i < n; i++){

b[(num_obs -1)*n+i] = 1;

// printf ("\ nBeta[%d][%d] = %f",(num_obs -1),i,b[(num_obs -1)*n

+i]);

}

for (t = num_obs -2; t >= 0; t--){

for (i = 0; i < n; i++){

b[t*n+i] = 0;

for (j = 0; j < n; j++){

b[t*n+i] += b[(t+1)*n+j]*(getTMVal(i,j,hmm))*

getOMVal(j,obs[t+1],hmm);

}

// printf ("\ nBeta[%d][%d] = %f",t,i,b[t*n+i]);

}

}

return b;

}

Figure 7.9: βt(i) computation in C

52

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

>gamma hmm obs = g_1

> where g_1 t’ state ’ = ((alpha hmm obs t’ state ’)*(beta hmm obs t

’ state ’))

> / (beta_Array hmm obs)

Figure 7.10: γt(i) computation in Haskell

7.3 Finding the optimal path using γt(i)

Finding the optimal path involves understanding how to compute γt(i) first; recall

Equation 3.6. Calculating the γt(i) values requires the αt(i)and βt(i) values being

multiplied together and then dividing that value by P (O|λ) which is known to be

equal to the sum of the αT−1 values (see Section 7.1). Then all that is left is to find

the state qi that maximizes γt(i) for each time period t.

Comparing implementations of the γt(i) calculations and pathfind-

ing

Figures 7.10 and 7.11 show the implementations of the γt(i) calculations in Haskell

and C respectively.

At this point, finding the optimal path becomes trivial as shown in the Haskell

(Figure 7.12) and C (Figure 7.13) implementations.

53

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

double* gamma_array(HMM *hmm , int* obs , int num_obs , double* a_A ,

double* b_A){

int n = hmm ->n;

double* g = (double *) malloc(sizeof(double)*num_obs*n);

int i,t;

//Remember , arrays here are of the form A[t][i] so do arithmetic

properly

for (i = 0; i < n; i++){

for (t = 0; t < num_obs; t++){

g[t*n+i] = a_A[t*n+i]*b_A[t*n+i] / alpha_pass(hmm , a_A ,

num_obs);

// printf ("\ nGamma [%d][%d] = %f",t,i,g[t*n+i]);

}

}

return g;

}

Figure 7.11: γt(i) computation in C

>pathFindHMM hmm obs = [Memo.integral findmax t | t <- [1.. b_T]]

> where b_T = snd $ bounds obs

> findmax t = argmax (\i -> gamma hmm obs t i) (states hmm)

Figure 7.12: Finding the optimal path in Haskell

state* pathFindHMM(HMM *hmm , int* obs , int num_obs ,double* g_A){

int n = hmm ->n;

int i,t;

double max;

state* ret_array = (state *) malloc(sizeof(state)*num_obs);

for (t = 0;t < num_obs; t++){

max = 0;

for (i = 0; i < n; i++){

if (g_A[t*n+i] > max) {

max = g_A[t*n+i];

ret_array[t] = i;

}

}

}

return ret_array;

}

Figure 7.13: Finding the optimal path in C

54

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

7.4 Re-estimating A,B, and π

Computing the di-gammas at this point is trivial thanks to Equation 3.8. Re-

estimation of A,B, and π is an iterative process. First the model must be initialized

with a best guess for A,B, and π. If there is not enough information to reasonably

guess, then choose random values such that πi ≈ 1/N, aij ≈ 1/N, and bj(k) ≈
1/M . It is very important that A and B are randomized, as uniform values can

result in a local maximum from which the model will not improve. π can be uniform

(often called an “uninformative prior” determined by the principle of indifference)

or randomized around 1/N , with the latter often preferred. From there, training of

A,B, and π is accomplished using the following algorithm:

1. Initialize the model λ = (A,B, π)

2. Compute the αt(i), βt(i), γt(i, j), and γt(i)

3. Re-estimate the model(λ = (A,B, π)) using Equations 3.9, 3.10, and 3.11

4. If P (O|λ) increases, repeat from step 2.

Comparing implementations of HMM training

The actual computations for the re-estimation of A,B, and π are trivial at this

point. As such their implementations will be largely ignored in this section, as will

the implementations of the initialization functions.

In Figure 7.14 training is fairly straightforward. First the iteration counter is

checked and then (if the remaining number of iterations is greater than 0) training is

called on an updated model named “itr” with one less iteration. The model param-

eters are re-estimated using the functions “newInitProbs”, “newTransMatrix”, and

55

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

>train hmm obs count

> | count == 0 = hmm

> | otherwise = train itr obs (count -1)

> where itr = trainItr hmm obs

>

>trainItr hmm obs =

> HMM { states = states hmm

> , events = events hmm

> , initProbs = newInitProbs

> , transMatrix = newTransMatrix

> , obsMatrix = newObsMatrix

> }

Figure 7.14: Training a model in Haskell

void re_est(HMM *hmm , int* obs , int num_obs){

int iters = 0;

int i,t;

int n = hmm ->n;

double oldProb = INT_MIN;

double newProb = 0;

double a_P;

double *a_A ,*b_A ,*g_A;

double* dg_A = (double *) malloc(sizeof(double)*num_obs*n*n);

while (iters < MAX_ITERS && newProb > oldProb){

oldProb = newProb;

a_A = alpha_array(hmm , obs , num_obs);

b_A = beta_array(hmm , obs , num_obs);

a_P = alpha_pass(hmm , a_A , num_obs);

dg_A = digamma_array(hmm , obs , num_obs , a_A , b_A , a_P);

g_A = gamma_array(hmm , obs , num_obs , a_A , b_A);

est_pi(hmm , g_A);

est_A(hmm , num_obs , g_A , dg_A);

est_B(hmm , obs , num_obs , g_A);

newProb = alpha_pass(hmm , a_A , num_obs);

iters ++;

}

}

Figure 7.15: Training a model in C

56

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

“newObsMatrix” called from inside the “trainItr” function. Each of those re-estimates

one of π,A, and B respectively.

Figure 7.15 shows how a model would be trained in C. The function loops until

either the max number of iterations is reached, or the new P (O|λ) is no longer

increasing. The lines from “a A” to “g A” are used for bookkeeping, in order to

retrieve the necessary values for the re-estimation calculations and then “est pi”,

“est A”, and “est B” compute the re-estimated values of π,A, and B respectively.

7.5 Scaling HMMs

There is one fairly major problem with the computation methods explained thus far,

namely that the computations involve calculating products of probabilities. This

would not be an issue if the calculations were being performed with infinite precision,

but that is not the case. It is a given that αt(i) tends to 0 as T increases. This will

inevitably result in underflow.

There is, however, a solution that will avoid underflow and that solution is to scale

the numbers being used in the calculations. In order to use scaled values of αt(i)

and βt(i), the re-estimation formulae must remain valid. This was covered in great

detail by Stamp (2004) and it was shown that the re-estimation formulae do, in fact,

remain valid with a scaling factor (ct) equal to

ct =
1∑N−1

j=0 αt(j)
(7.2)

.

The most interesting result of using this scaling factor is that it results in a few

57

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

simplifications that result in never having to calculate P (O|λ) again. To clarify, let

α̂t(i) be the scaled αt(i). Since

N−1∑
j=0

α̂T−1(j) = 1

and the scaling factor is defined such that α̂t(i) is equal to αt(i) multiplied by

(c0c1 . . . ct) then,

N−1∑
j=0

α̂T−1(j) = (c0c1 . . . ct)
N−1∑
j=0

αT−1(j).

Note the last sum is equal to P (O|λ) from Equation 7.1. Substituting the previous

two equations into each other gives:

P (O|λ) =
1∏T−1

t=0 ct

or more importantly:

log[P (O|λ)] = −
T−1∑
t=0

ct (7.3)

The total sum of the scaling factors can now be used in place of P (O|λ) as a means of

determining whether or not it is increasing after each training iteration, thus avoiding

the problem of products of probabilities causing underflow.

All of this was used in C to implement a version of the HMM which uses scale

factors, however the code is nearly identical to that shown in the previous sections

(with the exception of the trivial step of adding a scaling factor where necessary).

58

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

void re_estimate(HMM *hmm , int* obs , int num_obs){

int iters = 0;

int i,t;

int n = hmm ->n;

double logProb = 0;

double oldLogProb = INT_MIN;

double *a_A ,*b_A ,*g_A;

double c[num_obs];

double* dg_A = (double *) malloc(sizeof(double)*num_obs*n*n);

while (iters < MAX_ITERS && logProb > oldLogProb){

oldLogProb = logProb;

a_A = scaled_a_A(hmm , obs , num_obs , c);

b_A = scaled_b_A(hmm , obs , num_obs , c);

g_A = compute_scaled_gamma(hmm , obs , num_obs , a_A , b_A , dg_A

);

est_pi(hmm , g_A);

est_A(hmm , num_obs , g_A , dg_A);

est_B(hmm , obs , num_obs , g_A);

logProb = 0;

for (i = 0; i < num_obs; i++) {

logProb += log(c[i]);

}

logProb = -logProb;

iters ++;

printf("\nLogProb = %f", logProb);

}

}

Figure 7.16: Scaled training code in C

Figure 7.16 shows the modified code; note the scaling factor ‘c’ and the use of “log-

Prob”. The Haskell implementation, however, did not require scaling as there was

a pre-existing library called “LogFloat” which automatically handled converting to

the log domain and working with the values there, thus eliminating the need for an

explicit scaling factor.

59

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

7.6 HMMs in the HMM Generator

Note: The scaling mentioned in the code was introduced in Section 7.5.

This section will show the HMM Generator representation of the HMM imple-

mentation. For the final generated C code, please see Appendix B.

The forward algorithm

Refer to Figure 7.17 for the code which computes the αt(i) values. The first few lines

of code (the “let” block) is merely included for readability’s sake. The statements

prior to the “if” declaration are the necessary declarations of variables for each version,

and the “if” statement handles the design choices that are made when running the

generator (as mentioned in Chapter 6). If the chosen implementation is to be scaled,

then the αt(i) values are computed alongside the ct and the new scaled values are

returned. Otherwise, the scaling is thrown away and a much simpler version of the

code can be seen.

In Figure 7.18 it is clear that the α-pass code written in the HMM Generator

looks very similar to the original Haskell, with the exception of the necessary variable

declarations. It also outlines the simplicity of computing a sum using the DSL, as it

only requires one command.

The backward algorithm

Figure 7.19 shows the HMM Generator code for computing the βt(i) values. It looks

very similar to the code for computing αt(i) (Figure 7.17). The “let” block is again

included for readability’s sake and the statements prior to the “if” declaration are

60

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

alphaArray ch = useCounter_ijt $ \i_ j_ t_ ->

let i = v i_

j = v j_

t = v t_

scaled = elem (D.Scale Scaled) ch

hmmIPi = hmm @: (initProbs !: [i])

callGetOM = Call getOMVal [i, (obs !: [zero]), hmm]

c0 = scaling !: [zero]

ct = scaling !: [t]

sum = Sum j_ n [((a_A !: [t,i]) ,((a_A !: [(t :- (Int 1)),j])

:* (Call getTMVal [j,i,hmm])))] in

Funct (alphaArrayDecl ch) $

[n =%: ((hmm @: n),int),

Alloc a_A dbl

] ++

(if scaled then [

c0 =: ((Dbl 1.0) :/ (InitAndSum i_ n [(c0 ,(a_A !: [i]))] [((

a_A !: [i]) ,(hmmIPi :* callGetOM))])),

compute $ ProdSeq i_ n [((a_A !: [i]) ,(c0))],

For t (Int 1) num_obs $

[ct =: ((Dbl 1.0) :/ (InitAndSum i_ n [(ct, (a_A !: [t,i

]))] [((a_A !: [t,i]) ,(sum :* (Call getOMVal [i, (obs

!: [t]), hmm])))])),

compute $ ProdSeq i_ n [((a_A !: [t,i]) , ct)]

]

]

else [

Init (a_A !: [i]) i n (hmmIPi :* callGetOM),

For t (Int 1) num_obs $

[Init (a_A !: [t,i]) i n (sum :* (Call getOMVal [i, (obs !:

[t]), hmm]))]

]) ++ [

Return a_A

]

Figure 7.17: α computation in the HMM Generator

alphaPass ch = useCounter_i $ \i_ ->

let i = v i_ in

Funct (alphaPDecl ch) $

[ret_val_ %: dbl ,

n =%: ((hmm @: n),int),

Return $ Sum i_ n [(ret_val , a_A !: [num_obs :- (Int 1),i])]

]

Figure 7.18: α-pass in the HMM Generator

61

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

betaArray ch = useCounter_ijt $ \i_ j_ t_ ->

let i = v i_

j = v j_

t = v t_

scaled = elem (D.Scale Scaled) ch

callGetOM = Call getOMVal [j, (obs !: [t :+ (Int 1)]), hmm]

bNum_1 = b_A !: [(num_obs :- (Int 1)),i]

cNum_1 = scaling !: [num_obs :- (Int 1)]

ct = scaling !: [t]

sum = Sum j_ n [((b_A !: [t,i]) ,((b_A !: [(t :+ (Int 1)),j])

:* ((Call getTMVal [i,j,hmm]) :* (callGetOM))))] in

Funct (betaArrayDecl ch) $

[n =%: ((hmm @: n),int),

Alloc b_A dbl] ++

(if scaled then [

Init bNum_1 i n cNum_1 ,

MatrixBlockInit b_A [t,i] [((num_obs :- (Int 2)),zero) ,(zero

,n)] (ct :* sum)

]

else [

Init bNum_1 i n (Int 1),

MatrixComps [t,i] [(num_obs :- (Int 2),zero) ,(zero ,n)] [

compute sum]

]) ++ [

Return b_A

]

Figure 7.19: β computation in the HMM Generator

the necessary declarations of variables for each version, where the “if” statement

handles the design choices as previously mentioned. If the chosen implementation

is to be scaled, then the βt(i) values are computed and scaled using the ct values

determined from the α-pass. Otherwise, a very similar block of code is used with the

key difference being that it lacks scaling.

The β-pass implementation seen in Figure 7.20 should look very familiar as it is

almost identical (barring the “let” block) as the α-pass implementation.

62

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

betaPass ch = useCounter_i $ \i_ ->

let i = v i_

beta_var = (b_A !: [i]) :* (callGetOM :* hmmIPi)

hmmIPi = hmm @: (initProbs !: [i])

callGetOM = Call getOMVal [i, (obs !: [zero]), hmm] in

Funct (betaPDecl ch) $

[ret_val_ %: dbl ,

Return $ Sum i_ (hmm @: n) [(ret_val , beta_var)]

]

Figure 7.20: β-pass in the HMM Generator

not_sgamma ch = useCounter_it $ \i_ t_ ->

let i = v i_

t = v t_

not_sg = ((a_A !: [t,i]) :* (b_A !: [t,i])) :/ ap

ap = Call alpha_pass [hmm , (a_A), num_obs] in

Funct (gammaDecl ch) $

[n =%: ((hmm @: n),int),

t_ %: int ,

Alloc g_A dbl ,

For i zero n $

[Init (g_A !: [t,i]) t num_obs not_sg],

Return g_A

]

Figure 7.21: A non-scaled γ computation in the HMM Generator

Pathfinding in the HMM Generator

The pathfinding implementation is incredibly straightforward and as such will not

be examined in depth. It merely traverses the γt(i) values for each “t” and finds

the state “i” which maximizes that value (as explained in Section 3.4). However, the

γt(i) calculations can be done in one of two ways. The first method of calculating

the γt(i) values is the straightforward application of the math behind them, which

looks very similar to the Haskell and C implementations from Section 7.3 and can be

seen in Figure 7.21. Note that it is called the non-scaled version as the computation

directly relies on P (O|λ) which will never be calculated if using scaling factors.

63

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

Funct (gammaDecl ch) $

[n =%: ((hmm @: n),int),

Alloc g_A dbl ,

temp_ %: dbl ,

For t zero (num_obs :- (Int 1)) $

[compute tempSum ,

For i zero n $

[compute $ InitAndSum j_ n [((g_A !: [t,i]),dg_A_Val)] [(

dg_A_Val ,digamma_calc)]]

],

Return g_A

]

Figure 7.22: Scaled γ computation in the HMM Generator

The statements in Figure 7.22 show the process for computing γ while using

scaling factors. This γt(i) computation relies solely on the γt(i, j) values which are

computed by the HMM Generator code in the same statement. A fairly long “let”

block was omitted from the figure, as it is only the definitions of the terms (which

should be self-explanatory).

Training a model in the HMM Generator

Again the computations for A,B, and π will be omitted as they are straightforward.

The training code can be found in Figure 7.23. Note that in this case, the “let”

block is used both for readability and for determining whether or not the code should

be using scaling factors. Training in the HMM Generator looks very similar to the

C implementation as it includes the same variable declarations followed by a condi-

tional loop that re-estimates A,B, and π iteratively until either the max number of

iterations is reached or P (O|λ) is no longer increasing.

.

64

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

let i = v i_

while_exp = check1 :& check2

check1 = iters :< (max_iters)

check2 = logProb :> oldLogProb

scaled = elem (D.Scale Scaled) ch

params0 = [hmm , obs , num_obs]

params = params0 ++ (if scaled then [scaling] else [])

gparams = params0 ++ [a_A , b_A] ++ (if scaled then [dg_A]

else [])

log = (\x -> Call "log" x) in

Funct (re_estDecl ch) $

[n_ %: int ,

iters =%: (zero ,int),

logProb_ %: dbl ,

oldLogProb_ %: dbl ,

Alloc scaling dbl ,

a_A_ %: (ptr dbl),

b_A_ %: (ptr dbl),

g_A_ %: (ptr dbl),

n =: (hmm @: n),

logProb =: (int_min :+ (Int 1)),

oldLogProb =: int_min ,

Alloc dg_A dbl ,

CondLoop while_exp $

[oldLogProb =: logProb ,

a_A =: Call alpha_a params ,

b_A =: Call beta_a params ,

g_A =: Call gamma gparams ,

CallProc est_pi [hmm , g_A],

CallProc est_A [hmm , num_obs , g_A , dg_A],

CallProc est_B [hmm , obs , num_obs , g_A],

logProb =: (Neg (Sum i_ scaling [(logProb ,(log [scaling !:

[i]]))])),

iters =: (iters :+ (Int 1))

]

]

Figure 7.23: Training a model in the HMM Generator

65

Chapter 8

Testing

Testing for the HMM Generator is comprised of two major cases.

1. Ensuring the generator works.

2. Ensuring the generated source code works and that it represents the design.

8.1 Testing the generator

Testing the generator involved compilation tests, execution tests, and testing for

erroneous inputs. The first two sets of tests should be fairly self-explanatory.

Compilation tests were merely to ensure that the framework for the generator

itself compiled without any issue, whereas execution tests were to ensure that the

generator (when run) would actually produce some output code.

The final set of tests (for erroneous input) handled attempts to use the DSL in

unexpected ways. An example of such would be attempting to dereference an array

on any non-array type, which should throw an error. There were many similar tests,

66

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

each of which confirmed that the generator would not allow unexpected input.

These tests were necessary due to the way the AST represented the terms. All

variable types were implemented as expressions, so a series of checks needed to be

performed to ensure that the appropriate expression type was being used in each case.

The majority of the testing was performed after each iteration of the generator was

completed and revised (this was, of course, because of the agile software development

model which was being used in creating the generator).

The last test performed was an execution test used in conjunction with the HMM

implementation file in order to ensure that the generator was outputting the correct

source code.

8.2 Testing the generated code

Testing the source code can be represented by two types of tests. The first being

whether or not the generated source code performs the task it was designed for, and

the second is whether or not the source code represents the design that was specified.

All of the tests were run on each variant of the generated code (essentially, on the

scaled and non-scaled versions of the HMM implementation).

8.2.1 Does it work?

To test whether or not the code actually worked, it was run through a series of

automated test cases which were verified through external means. The output of the

automated tests was going to be added to the appendix, however, the re-estimation

tests ended up being far too large (spanning hundreds of pages) for that. What follows

67

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

will be examples of the types of tests used on each of the source variants.

The α-pass

As an example of this test case, consider the following model λ = (π,A,B) such

that:

π =
[
0.6 0.4

]
A =

0.7 0.3

0.4 0.6

 B =

0.1 0.4 0.5

0.7 0.2 0.1

Given the observation sequence O = (0, 1, 0, 2) find P (O|λ). Through pen

and paper calculations, the probability of the given state sequence was found to be

0.0096296.

Testing the α-pass for the scaled version of the HMM implementation is incredibly

simple. The use of scaling factors ensures that an α-pass will always result in a value

of ‘1’ (by definition of the scaling factor, see Equation 7.2). However, determining

the probability of the observation sequence is a little bit more difficult.

To determine whether the P (O|λ) is correct, there are several methods. The

first is to take the inverse log of the negative sum of the scaling factors to compute

the actual value (this makes scaling redundant). The second is to determine the ct

values and calculate the probability as 1∏T−1
t=0 ct

, again, essentially ignoring the point

of scaling. Using either of these two methods, the result obtained from running this

test on the generated source code was P (O|λ) = 0.009630 which is the result of

C rounding the value.

Testing the α-pass for the non-scaled version was much simpler. As the HMM

68

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

used in this test was relatively small (in terms of the number of possible states/ob-

servations) this ensured that underflow would not be an issue. Thus, it only required

calling the α-pass function and checking the value, which was 0.009630, again due

to rounding.

To test the α-pass fully, both the non-scaled and scaled versions were subjected

to a series of other tests using different models and observation sequences, and the re-

sulting values were confirmed through external means (in most cases, a slight variance

was allowed due to rounding, this will be addressed in a later section). Some of the

models resulted in underflow for the non-scaled version of the source (as expected),

and the rest of the tests passed on each version without issue.

A simple pathfinding case

For this test case, suppose the same model from the α-pass example was used, that

is λ = (π,A,B) such that:

π =
[
0.6 0.4

]
A =

0.7 0.3

0.4 0.6

 B =

0.1 0.4 0.5

0.7 0.2 0.1

Given the same observation sequence as before, O = (0, 1, 0, 2), find the most

likely state sequence.

As mentioned in Chapter 3, this test will use the HMM approach to the “most

likely” state sequence. This means it will look for the path which maximizes the

expected number of correct states. Pen and paper calculations reveal the path to be

S = 1, 0, 1, 0.

The generated code was tested, and each version (scaled and non-scaled) returned

69

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

the path S = 1, 0, 1, 0 as their result. The main difference between these two

implementations was in the γt(i) calculations, as the non-scaled version computes

P (O|λ) directly using the α-pass and uses that value in the calculations. The scaled

version, on the other hand, computes the γt(i, j) values to determine the value of

γt(i) (see Figures 7.21 and 7.22 for implementation details).

Again, to test the pathfinding functions fully, other models and observation se-

quences were used and the returned values were confirmed via external means. All

of the tests returned the expected paths (except in cases where underflow was the

expected result on the non-scaled code).

Training tests

As a very simple example test, consider an unknown model λ = (π,A,B) with

N = M = 2. Now given an observation sequence of length 150 where O =

(0, 0, 0, . . .), train the model.

Intuitively, one can see that if this model is trained on the given observation

sequence, the B matrix should end up with zero values for the probability of emitting

an observation other than zero from any state. After training the model, the resulting

B-matrix (from the generated implementation) was:

B =

1.0 0.0

1.0 0.0

This confirms the intuition that the only possible observations are Ot = 0.

The majority of the training (or re-estimation) tests involved models that were too

large to include a concise description of. However, the testing process remained the

70

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

same as in the other sections. The models were trained using an observation sequence

and on each iteration of re-estimation all of the calculated values were logged, then

compared to their expected values (again, confirmed through external means).

8.2.2 Does it represent the design?

Since the generated source code has been shown to perform the task it was designed

for, the last question is whether or not it truly represents the specified design. This

may seem redundant or unnecessary (i.e. since the code works, who cares?), but it

confirms whether or not the generator is able to produce a proper representation of

a high-level design in a designated output language.

Testing this can be difficult depending on the scope of the code being generated

as the most effective means (thus far) are to have human programmers read through

the source and compare it with the design specifications. Each high-level concept in

the DSL should be represented by an appropriate algorithm which makes sense from

a programming perspective.

In the case of the HMM implementation, the generator’s output was compared

with a seperate source for handling HMMs in C as well as the design. It was concluded

that the generated source represented the design, and by comparing it with a similar

source code in the given output language the algorithms were appropriately chosen.

71

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

8.3 Known Issues and Special Cases

Refer to Section 8.2.1 for the example we will reference. There is a very obvious

problem with using that example. When it comes to training a model, if the ob-

servation set ends with an event never before observed (as it does in that case), the

re-estimated probability of observing that event will be zero. This is because of equa-

tion (3.7) which calculates the digamma values for each of the t = 0, 1, . . . , T − 2

observations. The last observation (OT−1) is used in the calculation of γT−2(i, j)

but will never be accounted for in the re-estimation of B (Equation 3.11).

However, this special case should not be a problem in practice as the majority of

HMM uses deal with substantial amounts of data. Thus it is highly unlikely that this

situation would occur unless the HMM were being used in an atypical manner.

Another known issue is that of rounding errors. Specifically, the current imple-

mentation uses C’s “double” type to represent the probabilities. A simple fix would

be to select a data type with higher precision, however, there will always be the pos-

sibility of rounding errors as the probability values become smaller. This is purely

dependent on the output language’s handling of very small numbers.

Finally there is an issue with pathfinding which comes from the math itself. While

the HMM approach to pathfinding gives the most number of expected correct states,

there may be some illegal state transitions (for example, where the state transition

matrix has a zero probability of moving from state i to state j some segment of the

returned path may be {. . . , i, j, . . . }). One solution to this would be to implement a

method for checking whether or not a state transition is possible prior to finding the

expected correct states, and ignoring any states that would be chosen from an illegal

transition (instead selecting the next highest scoring valid state). Another solution

72

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

would be to implement the dynamic programming approach (known as the Viterbi

algorithm), which would then return the path with the overall highest probability

(which may differ from the HMM approach solution).

73

Chapter 9

Conclusion

The HMM Generator created for this paper simplifies the production of differing

HMM implementations. Each of the versions produced has been tested and shown to

be working code as per the requirements.

This project was relatively small in scale, but works as a proof of concept that

specialised learning algorithms can be produced fairly simply once a generator frame-

work is in place. As such, increasing this project’s scope to use a larger and more

robust DSL (determined with the input of domain experts) could provide an excellent

framework for creating a vast array of specialised learning algorithm implementations.

9.1 Lessons Learned

The method of using a domain specific language and code generator for the production

of learning algorithms relies on a fundamental understanding of domain concepts (in

this case, HMMs and their realizations as algorithms). The domain underlying the

production of a DSL must be conceptually clear and unambiguous in order to produce

74

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

an effective DSL.

Another lesson is that the abstraction process from concrete code to a DSL-driven

code generator can be done incrementally. The results shown here are actually at a

point inside the (as yet) incomplete abstraction process. While the internal DSL is

better than the raw C code, it is still far from the high-level conception that a learning

algorithm user would prefer. However, there is no doubt that the abstraction process

can be continued, eventually leading to such a high-level conception.

A third lesson, which is entirely invisible from the result shown here, is that this

incremental process is not monotone: it frequently happened that a step “sideways”

was needed to achieve a proper step forward. For example, in the initial implemen-

tation of the DSL, mathematical operations were their own specific type of terrm. In

order to clean up the syntax, that was changed and they were folded into the expres-

sions of the DSL. This actually convoluted the code moreso, as it allowed for more

erroneous inputs in favour of ease of writing. However, this convolution eventually

led to the seperation of statements and expressions which removed a large number of

possible errors and cleaned up the syntax of the DSL.

9.2 Next Steps

There are many ways to expand this project’s scope and continue the development

process.

The most obvious next step in the development process would be to fix the cur-

rently known issues with the HMM Generator. Modifying the current implementation

by adding new terms to the AST (to match some less obvious patterns) would allow

for more concise segments of program code and would also reduce the complexity of

75

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

learning how to use the HMM Generator.

The HMM Generator can also be expanded in a number of ways which were

outside the scope of this project, but would be useful in the future, such as:

• Implementing the Viterbi algorithm for pathfinding and including it as a design

choice in the design AST.

• Expanding to cover a larger variety of models and systems that rely on Bayesian

statistics.

• Adding the ability to output to multiple languages (not solely C).

• Optimization improvements in the final output code, as well as in the transitions

between the internal AST and the output language AST(s).

• Allow for custom libraries to be included

76

Appendix A

AST Implementations

A.1 ASTDesign

module ASTDesign where

data Choices = Lang Language

| Scale Scaling

| MaxIt Int

deriving (Eq,Show)

data Language = C

| Haskell

deriving (Eq,Show)

data Scaling = Scaled

| NotScaled

deriving (Eq,Show)

type Library = String

77

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

A.2 ASTInternal

module ASTInternal where

--AST module (internal)

import ASTDesign as D

data Program = Program [D.Choices] Name [GlobalDecl]

type Name = String

data GlobalDecl = CDecl Name [ParamDecl]

| MACDecl Name String

| Funct FuncSig [Stmt]

data FuncSig = FDecl Type Name [ParamDecl]

data ParamDecl = PDecl Type Name

data Expr = Deref Expr Expr

| NDArrDeref Expr [Expr]

-- NDArrDeref Array [Indices]

--Get val at location [i1 ,i2 ,i3 ,...,in]

| Malloc Type Expr

--Malloc Type Multiplier

--(NOTE: Multiplier should not include SizeOf Type)

--Type should never be a Ptr for it to work

| Call Name [Expr] --Call named function

| Length Expr --Only works on Arrays

| Var Variable

| Str String

| Int Integer

78

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

| Dbl Double

| NDArr Array [Size]

--NDimensionalArray Name [row_size ,column_size ,depth_size

,4 _index_size ,...,n-index_size]

| Expr :* Expr

| Expr :+ Expr

| Expr :/ Expr

| Expr :- Expr

| Expr :> Expr

| Expr :< Expr

| Expr :== Expr

| Expr :& Expr

| Neg Expr

| Unit

| Sum Name Expr [(Expr , Expr)]

-- Sum LoopVar Array [(ResultVar , MathFunct)] ?

-- S2D Result Loop1 Array Loop2 Array MathFunct

| Sum2D Expr Name Expr Name Expr Expr

| InitAndSum Name Expr [(Expr ,Expr)] [(Expr ,Expr)]

-- InitAndSum LoopVar Array [Sum pairs] [Init Pairs]

-- First list is (ResultVar ,MathFunct) just like in Sum

-- Second list is inits , i.e. (Array ,Value).

| ProdSeq Name Expr [(Expr , Expr)]

-- Works the same as sum , except ends up with result =: (

result :* math)

data Stmt = CallProc Name [Expr]

| Out Expr

| Define Type Expr

79

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

| Assign Expr Expr

-- Define Var Value Type

| For Expr Expr Expr [Stmt]

-- For "Variable" start end [Do these things]

-- ex. For (Var "i") (Int 0) (Int 10)

-- [(Var "i") =: (Op (Var "i") :+ (Var "i"))]

-- --> For (i = 0; i < 10; i++) {i = i+i;}

| Return Expr

| If Expr [Stmt] [Stmt] --If condition [do] [else do]

| CondLoop Expr [Stmt]

| EmptyStmt Expr

| Block [Stmt]

| UniformDist Expr Name

-- UniformDist Array Index

-- Init uniform values over an array (using a named index)

-- ex. UniformDist array i

-- --> For index 0 (Length array) [array !: index =: 1/(

Length array)]

| NUniDist Expr Name Name

-- NUniDist array outlvar inlvar

-- Init non -uniform values over a 2D array

-- ex. NUniDist (NDArr name [num_row ,num_col]) i j

-- --> For i 0 num_row $

-- [For j 0 num_col $

-- [(array !: [i,j]) =: ((1+j)/ ((num_col :* (

num_col +1)) :/ 2))]

--]

| Init Expr Expr Expr Expr

-- Initialize (Array!: SomeIndExpr) Index Num_Elems Value

80

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

-- Initialize first num_elems of array (using index in "

SomeIndExpr ") with value of "Expr"

--ex: Init (a!:(i*n)) i n e = For i zero n [(a!:(i*n)) = e

]

| Alloc Expr Type

| MatrixBlockInit Expr [Expr] [(Expr ,Expr)] Expr

-- MBlockInit matrix [indices] [Ranges (start ,end)] Value

-- Indices are matched with ranges and setup from there

| MatrixComps [Expr] [(Expr , Expr)] [Stmt]

-- MatrixComps [indices] [Ranges] [Ops]

-- Used to perform computations over matrix indices/ranges

data Type = IntType

| VoidType

| StrType

| PtrType Type

| HMMType

| DblType

deriving Eq

type Variable = String

type Array = String

type Size = Expr

--

-- Make things prettier

int , dbl , void , str:: Type

int = IntType

dbl = DblType

void = VoidType

81

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

str = StrType

ptr :: Type -> Type

ptr = PtrType

v = Var

(%:) :: Name -> Type -> Stmt

x %: t = Define t $ v x

(=:) :: Expr -> Expr -> Stmt

x =: e = Assign x e

(=%:) :: Expr -> (Expr , Type) -> Stmt

x =%: (e,t) = Block [Define t x, Assign x e]

(@:) :: Expr -> Expr -> Expr

x @: e = Deref x e

(!:) :: Expr -> [Expr] -> Expr

x !: e = NDArrDeref x e

unit = EmptyStmt Unit

compute :: Expr -> Stmt

compute = EmptyStmt

82

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

A.3 ASTC

module ASTC where

--AST module

import ASTDesign as D

------------Program -------------

data Program = Program Name [D.Library] [Declaration] [Method]

deriving Show

type Name = String

-------------Method -------------

data Method = Meth Declaration Stmt

| NullMeth

deriving Show

----------Declaration -----------

data Declaration = SDecl Name [Declaration]

| MDecl Type Name [Declaration]

| ADecl Type Variable

| MACDecl Name String

deriving Show

type Variable = String

type Array = String

type Size = Expr

-----------Expression -----------

data Expr = Deref Expr Expr

| ArrDeref Expr Expr

83

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

| Call Name [Expr] --Call function of type

| Malloc Type Expr --Type should never be a Ptr for it to

work

| SizeOf Type

| Var Variable

| Str String

| Int Integer

| Dbl Double

| Mult Expr Expr

| Add Expr Expr

| Div Expr Expr

| Sub Expr Expr

| Greater Expr Expr

| Less Expr Expr

| Equal Expr Expr

| And Expr Expr

| Neg Expr

| Arr Array Size

| NDArr Array [Size]

| Unit

deriving Show

-----------Statements -----------

data Stmt = CallProc Name [Expr]

| Out Expr

| Define Type Expr

| Assign Expr Expr

84

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

| For Expr Expr Expr [Stmt] --For "Variable" start end [Do

these things] ex. For (Var "i") (Int 0) (Int 10) [(Var

"i") =: (Op (Var "i") :+ (Var "i"))] --> For (i = 0; i

< 10; i++) {i = i+i;}

| Return Expr

| If Expr [Stmt] [Stmt] --If condition [do] [else do]

| CondLoop Expr [Stmt]

| Block [Stmt]

deriving Show

--------------Type --------------

data Type = IntType

| VoidType

| StrType

| PtrType Type

| HMMType

| DblType

| NullType

deriving Show

85

Appendix B

Generated C Code

Note: This is the scaled version of the C code as produced by the HMM Generator.

B.1 Header File

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <limits.h>

#define MAX_ITERS 1000

typedef struct {

int n;

int m;

double* initProbs;

double* transMatrix;

double* obsMatrix;

} HMM;

double getTMVal(int state ,int state2 ,HMM* hmm);

86

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

double getOMVal(int state ,int event ,HMM* hmm);

void setTMVal(double val ,int row ,int col ,HMM* hmm);

void setOMVal(double val ,int row ,int col ,HMM* hmm);

void init_rand(int n,int m,HMM* hmm);

void init_pi(int n,double* n_pi);

void init_a(int n,double* a);

void init_b(int n,int m,double* b);

double* alpha_Array(HMM* hmm ,int* obs ,int num_obs ,double* scaling);

double* beta_Array(HMM* hmm ,int* obs ,int num_obs ,double* scaling);

double alpha_pass(HMM* hmm ,double* a_A ,int num_obs);

double beta_pass(HMM* hmm ,double* b_A ,int* obs ,int num_obs);

double* gamma_array(HMM* hmm ,int* obs ,int num_obs ,double* a_A ,double

* b_A ,double* dg_A);

int* pathFindHMM(HMM* hmm ,int* obs ,int num_obs ,double* g_A);

void est_pi(HMM* hmm ,double* g_A);

void est_A(HMM* hmm ,int num_obs ,double* g_A ,double* dg_A);

void est_B(HMM* hmm ,int* obs ,int num_obs ,double* g_A);

void re_estimate(HMM* hmm ,int* obs ,int num_obs);

B.2 C Source File

#include "HMMProg.h"

double getTMVal(int state ,int state2 ,HMM* hmm) {

int n;

n = hmm ->n;

return hmm ->transMatrix [(state*n+state2)];

}

double getOMVal(int state ,int event ,HMM* hmm) {

int m;

87

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

m = hmm ->m;

return hmm ->obsMatrix [(state*m+event)];

}

void setTMVal(double val ,int row ,int col ,HMM* hmm) {

int n;

n = hmm ->n;

hmm ->transMatrix [(row*n+col)] = val;

}

void setOMVal(double val ,int row ,int col ,HMM* hmm) {

int m;

m = hmm ->m;

hmm ->obsMatrix [(row*m+col)] = val;

}

void init_rand(int n,int m,HMM* hmm) {

double* a;

double* b;

double* n_pi;

n_pi = (double *) malloc(sizeof(double)*n);

a = (double *) malloc(sizeof(double)*n*n);

b = (double *) malloc(sizeof(double)*n*m);

init_pi(n,n_pi);

init_a(n,a);

init_b(n,m,b);

hmm ->n = n;

hmm ->m = m;

hmm ->initProbs = n_pi;

hmm ->transMatrix = a;

hmm ->obsMatrix = b;

}

88

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

void init_pi(int n,double* n_pi) {

int i0;

for (i0=0; i0 <n; i0++) {

n_pi[i0] = (1.0/n);

}

}

void init_a(int n,double* a) {

int i1;

int j;

for (i1=0; i1 <n; i1++) {

int j;

for (j=0; j<n; j++) {

a[(i1*n+j)] = ((1.0+j)/(n*(n+1.0) /2.0));

}

}

}

void init_b(int n,int m,double* b) {

int i2;

int j0;

for (i2=0; i2 <n; i2++) {

int j0;

for (j0=0; j0 <m; j0++) {

b[(i2*m+j0)] = ((1.0+ j0)/(m*(m+1.0) /2.0));

}

}

}

double* alpha_Array(HMM* hmm ,int* obs ,int num_obs ,double* scaling) {

double* a_A;

int i3;

89

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

int t;

int n;

n = hmm ->n;

a_A = (double *) malloc(sizeof(double)*num_obs*n);

scaling [0] = 0;

for (i3=0; i3 <n; i3++) {

a_A[i3] = hmm ->initProbs[i3]* getOMVal(i3 ,obs[0],hmm);

scaling [0] = (scaling [0]+ a_A[i3]);

}

scaling [0] = (1.0/ scaling [0]);

for (i3=0; i3 <n; i3++) {

a_A[i3] = a_A[i3]* scaling [0];

}

for (t=1; t<num_obs; t++) {

int i3;

scaling[t] = 0;

for (i3=0; i3 <n; i3++) {

int j00;

a_A[(t*n+i3)] = 0;

for (j00=0; j00 <n; j00++) {

a_A[(t*n+i3)] = (a_A[(t*n+i3)]+a_A[((t-1)*n+j00)]*

getTMVal(j00 ,i3,hmm));

}

a_A[(t*n+i3)] = a_A[(t*n+i3)]* getOMVal(i3 ,obs[t],hmm);

scaling[t] = (scaling[t]+a_A[(t*n+i3)]);

}

scaling[t] = (1.0/ scaling[t]);

for (i3=0; i3 <n; i3++) {

a_A[(t*n+i3)] = a_A[(t*n+i3)]* scaling[t];

90

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

}

}

return a_A;

}

double* beta_Array(HMM* hmm ,int* obs ,int num_obs ,double* scaling) {

double* b_A;

int i4;

int t0;

int n;

n = hmm ->n;

b_A = (double *) malloc(sizeof(double)*num_obs*n);

for (i4=0; i4 <n; i4++) {

b_A[((num_obs -1)*n+i4)] = scaling [(num_obs -1)];

}

for (t0=(num_obs -2); t0 >=0; t0 --) {

int i4;

for (i4=0; i4 <n; i4++) {

int j000;

b_A[(t0*n+i4)] = 0;

for (j000 =0; j000 <n; j000 ++) {

b_A[(t0*n+i4)] = (b_A[(t0*n+i4)]+b_A[((t0+1)*n+j000)

]* getTMVal(i4 ,j000 ,hmm)*getOMVal(j000 ,obs[(t0+1)

],hmm));

}

b_A[(t0*n+i4)] = scaling[t0]*b_A[(t0*n+i4)];

}

}

return b_A;

}

91

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

double alpha_pass(HMM* hmm ,double* a_A ,int num_obs) {

int i5;

double ret_val;

int n;

n = hmm ->n;

ret_val = 0;

for (i5=0; i5 <n; i5++) {

ret_val = (ret_val+a_A [((num_obs -1)*n+i5)]);

}

return ret_val;

}

double beta_pass(HMM* hmm ,double* b_A ,int* obs ,int num_obs) {

int i6;

double ret_val;

ret_val = 0;

for (i6=0; i6 <hmm ->n; i6++) {

ret_val = (ret_val+b_A[i6]* getOMVal(i6 ,obs[0],hmm)*hmm ->

initProbs[i6]);

}

return ret_val;

}

double* gamma_array(HMM* hmm ,int* obs ,int num_obs ,double* a_A ,double

* b_A ,double* dg_A) {

double* g_A;

int t00;

int n;

n = hmm ->n;

g_A = (double *) malloc(sizeof(double)*num_obs*n);

double temp;

92

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

for (t00=0; t00 <(num_obs -1); t00++) {

int i7;

temp = 0;

for (i7=0; i7 <n; i7++) {

int j0000;

for (j0000 =0; j0000 <n; j0000 ++) {

temp = (temp+a_A[(t00*n+i7)]* getTMVal(i7 ,j0000 ,hmm)*

getOMVal(j0000 ,obs[(t00+1)],hmm)*b_A [((t00 +1)*n+

j0000)]);

}

}

for (i7=0; i7 <n; i7++) {

int j0000;

g_A[(t00*n+i7)] = 0;

for (j0000 =0; j0000 <n; j0000 ++) {

dg_A[(t00*n*n+(i7*n+j0000))] = (a_A[(t00*n+i7)]*

getTMVal(i7,j0000 ,hmm)*getOMVal(j0000 ,obs[(t00 +1)

],hmm)*b_A[((t00+1)*n+j0000)]/temp);

g_A[(t00*n+i7)] = (g_A[(t00*n+i7)]+dg_A[(t00*n*n+(i7

*n+j0000))]);

}

}

}

return g_A;

}

int* pathFindHMM(HMM* hmm ,int* obs ,int num_obs ,double* g_A) {

int* ret_array;

int t000;

int n;

93

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

n = hmm ->n;

double max;

ret_array = (int *) malloc(sizeof(int)*num_obs);

for (t000 =0; t000 <num_obs; t000 ++) {

int i8;

max = 0;

for (i8=0; i8 <n; i8++) {

if (g_A[(t000*n+i8)]>max) {

max = g_A[(t000*n+i8)];

ret_array[t000] = i8;

}

}

}

return ret_array;

}

void est_pi(HMM* hmm ,double* g_A) {

int i9;

int n;

n = hmm ->n;

for (i9=0; i9 <n; i9++) {

hmm ->initProbs[i9] = g_A[i9];

}

}

void est_A(HMM* hmm ,int num_obs ,double* g_A ,double* dg_A) {

int i10;

double num;

double denom;

double temp;

int n;

94

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

n = hmm ->n;

for (i10=0; i10 <n; i10++) {

int j00000;

for (j00000 =0; j00000 <n; j00000 ++) {

int t0000;

num = 0;

denom = 0;

for (t0000 =0; t0000 <(num_obs -1); t0000 ++) {

num = (num+dg_A[(t0000*n*n+(i10*n+j00000))]);

denom = (denom+g_A[(t0000*n+i10)]);

}

temp = (num/denom);

setTMVal(temp ,i10 ,j00000 ,hmm);

}

}

}

void est_B(HMM* hmm ,int* obs ,int num_obs ,double* g_A) {

int i11;

int n;

n = hmm ->n;

int m;

m = hmm ->m;

double num;

double denom;

double temp;

for (i11=0; i11 <n; i11++) {

int j000000;

for (j000000 =0; j000000 <m; j000000 ++) {

int t00000;

95

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

num = 0;

denom = 0;

for (t00000 =0; t00000 <(num_obs -1); t00000 ++) {

if (obs[t00000]== j000000) {

num = (num+g_A[(t00000*n+i11)]);

}

denom = (denom+g_A[(t00000*n+i11)]);

}

temp = (num/denom);

setOMVal(temp ,i11 ,j000000 ,hmm);

}

}

}

void re_estimate(HMM* hmm ,int* obs ,int num_obs) {

double* dg_A;

double* scaling;

int n;

int iters;

iters = 0;

double logProb;

double oldLogProb;

scaling = (double *) malloc(sizeof(double)*num_obs);

double* a_A;

double* b_A;

double* g_A;

n = hmm ->n;

logProb = (INT_MIN +1);

oldLogProb = INT_MIN;

dg_A = (double *) malloc(sizeof(double)*num_obs*n*n);

96

M.A.Sc. Thesis - Daniel M. Szymczak McMaster - Software Engineering

while (iters <MAX_ITERS && logProb >oldLogProb) {

int i12;

oldLogProb = logProb;

a_A = alpha_Array(hmm ,obs ,num_obs ,scaling);

b_A = beta_Array(hmm ,obs ,num_obs ,scaling);

g_A = gamma_array(hmm ,obs ,num_obs ,a_A ,b_A ,dg_A);

est_pi(hmm ,g_A);

est_A(hmm ,num_obs ,g_A ,dg_A);

est_B(hmm ,obs ,num_obs ,g_A);

logProb = 0;

for (i12=0; i12 <num_obs; i12++) {

logProb = (logProb+log(scaling[i12]));

}

logProb = -logProb;

iters = (iters +1);

}

}

97

Appendix C

Large Test Case Results

Results from automated test script were too long (260 pages) to be included.

Over 7300 tests were performed throughout re-estimation processes on a large

scale example, and the returned values were tested against the expected results.

All tests passed.

98

Bibliography

Baker, J. (1975). The DRAGON system–An overview. Acoustics, Speech and Signal

Processing, IEEE Transactions on, 23(1), 24–29.

Baum, L. E. and Petrie, T. (1966). Statistical Inference for Probabilistic Functions

of Finite State Markov Chains. The Annals of Mathematical Statistics, 37(6),

1554–1563.

Beyak, L. (2011). SAGA: A Story Scripting Tool for Video Game Development.

Bolstad, W. (2007). Introduction to Bayesian Statistics. Wiley, second edition.

Costabile, J. (2012). GOOL: A Generic OO Language.

Curutan, B. (2013). CPCG: A Cross-Paradigm Code Generator.

Fowler, M. (2010). Domain Specific Languages. Addison-Wesley Professional, 1st

edition.

Mur, R. A. (2006.). Automatic Inductive Programming.

http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm. [ICML 2006

Tutorial.].

Stamp, M. (2004). A Revealing Introduction to Hidden Markov Models.

99

http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	Requirements
	Code generator requirements
	DSL Requirements
	Generated source requirements

	Bayesian Statistics
	An Introduction
	Bayesian Inference
	Introduction to Hidden Markov Models (HMMs)
	The Math behind Hidden Markov Models

	Domain Specific Languages
	What are DSLs?
	DSLs: Embedded vs. External
	Relevance

	Code Generation
	What is code generation?
	How does code generation work?
	Why use code generation?

	The HMM Generator
	The Components
	Some domain specific terms
	Constructing a program using the DSL Syntax
	Expressions
	Statements

	Putting it all together: A simple Hello World program

	HMM Implementation
	The forward algorithm
	The backward algorithm
	Finding the optimal path using t(i)
	Re-estimating A,B, and
	Scaling HMMs
	HMMs in the HMM Generator

	Testing
	Testing the generator
	Testing the generated code
	Does it work?
	Does it represent the design?

	Known Issues and Special Cases

	Conclusion
	Lessons Learned
	Next Steps

	AST Implementations
	ASTDesign
	ASTInternal
	ASTC

	Generated C Code
	Header File
	C Source File

	Large Test Case Results

